精英家教网 > 高中数学 > 题目详情
14.若复数(2+i)(1+ai)是纯虚数(i是虚数单位,a是实数),则a等于(  )
A.-1B.$-\frac{1}{2}$C.2D.3

分析 利用复数的乘法运算法则化简复数,通过复数虚部不为0,实部为0,求解即可.

解答 解:复数(2+i)(1+ai)=2-a+(2a+1)i,
复数(2+i)(1+ai)是纯虚数,
可得2-a=0,2a+1≠0,解得a=2.
故选:C.

点评 本题考查复数的基本运算以及基本概念的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.在四面体PABC中,PB=PC=AB=AC,M是线段PA上一点,N是线段BC的中点,则∠MNB=90°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.定义在(0,+∞)上的可导函数f(x)满足xf′(x)-f(x)=x,且f(1)=1.现给出关于函数f(x)的下列结论,正确的个数为(  )
①函数f(x)在$({\frac{1}{e},+∞})$上单调递增
②函数f(x)的最小值为$-\frac{1}{e^2}$
③函数f(x)有且只有一个零点
④对于任意x>0,都有f(x)≤x2
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:?x0∈R,x02+x0+1≤0,则¬p为(  )
A.?x0∈R,x02+x0+1>0B.?x0∉R,x02+x0+1>0
C.?x∈R,x2+x+1>0D.?x∈R,x2+x+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的通项公式为an=3n-2n,求它的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某人有5把不同的钥匙,其中一把可以打开家门,因为天黑看不清应该使用哪一吧,所以只能逐个试.
(1)用ξ表示恰好把门打开时用过的钥匙把数,求ξ的值域;
(2)假设不超过2次就把门打开,算作“巧”;超过2次,算作“拙”.试设一个随机变量表示“巧”、“拙”.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图所示,AB为⊙O的直径,O为圆心,PB与⊙O相切于点B,PO交⊙O于点D,AD的延长线交PB于点C,若AB=2,PB=2$\sqrt{2}$,则BC=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知A(1,0)、B(0,1)、C(-3,-2)三点.
(1)求直线BC的方程;
(2)试判断三角形ABC的形状;
(3)求三角形ABC外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在平面直角坐标系xOy中,F1,F2分别是椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),且△BF1F2是边长为2的等边三角形.
(1)求椭圆的方程;
(2)过右焦点F2的直线l与椭圆交于A,C两点,记△ABF2,△BCF2的面积分别为S1,S2.若S1=2S2,求直线l的斜率.

查看答案和解析>>

同步练习册答案