精英家教网 > 高中数学 > 题目详情
5.定义在(0,+∞)上的可导函数f(x)满足xf′(x)-f(x)=x,且f(1)=1.现给出关于函数f(x)的下列结论,正确的个数为(  )
①函数f(x)在$({\frac{1}{e},+∞})$上单调递增
②函数f(x)的最小值为$-\frac{1}{e^2}$
③函数f(x)有且只有一个零点
④对于任意x>0,都有f(x)≤x2
A.1B.2C.3D.4

分析 由条件可得f(x)=x(lnx+1),利用导数求得f(x)的单调区间,可得①②正确;根据零点的定义可得③正确;设h(x)=f(x)-x2,利用导数研究单调性,由单调性求得h(x)的极大值为0,可得④正确,从而得出结论.

解答 解:由题意可得$\frac{x•f′(x)-f(x)}{{x}^{2}}$=$\frac{1}{x}$,根据积分可得:$\frac{f(x)}{x}$=lnx+C,即f(x)=xlnx+Cx.
代入f(1)=C=1,可得:f(x)=xlnx+x=x(lnx+1).
故f′(x)=lnx+2,求得极值点为x=$\frac{1}{{e}^{2}}$,
故函数在(0,$\frac{1}{{e}^{2}}$)上,f′(x)<0,f(x)单调递减;
在($\frac{1}{{e}^{2}}$,+∞)上,f′(x)>0,f(x)单调递增,故①正确.
由以上可得,函数f(x)的最小值为f($\frac{1}{{e}^{2}}$)=-$\frac{1}{{e}^{2}}$,故②正确.
由f(x)=0,求得:x=$\frac{1}{e}$,是唯一零点,故③正确.
记h(x)=f(x)-x2=x(lnx+1-x),令g(x)=lnx+1-x,
则g′(x)=$\frac{1}{x}$-1=0得:x=1,再根据g'(x)的符号可得函数g(x)在(0,1)上是增函数,
在(1,+∞)上是减函数,故x=1为g(x)的极大值点,而g(1)=0,
即g(x)≤0,从而有h(x)=g(x)-x2≤0,故④正确,
故选:D.

点评 本题主要考查导数的运算,导数与函数的单调性的关系,求函数的极值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.求导函数:f(x)=$\frac{{x}^{3}-2}{2(x-1)^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.偶函数f(x)满足f(x)=f(2-x),且当x∈[-1,0]时,f(x)=cos$\frac{πx}{2}$-1,若函数g(x)=f(x)-logax有且仅有三个零点,则实数a的取值范围是(  )
A.$({\frac{1}{5},\frac{1}{3}})$B.$({\frac{1}{4},\frac{1}{2}})$C.(2,4)D.(3,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.湖南卫视“我是歌手”这个节目深受广大观众喜爱,节目每周直播一次,在某周比赛中歌手甲、乙、丙竞演完毕,现场的某4位大众评审对这3位歌手进行投票,每位大众评审只能投一票且把票投给任一歌手是等可能的,求:
(Ⅰ)恰有2人把票投给歌手甲的概率;
(Ⅱ)投票结束后得票歌手的个数ζ的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知⊙O的直径为AB,点C为⊙O上异于A,B的一点,BC⊥VA,AC⊥VB.
(Ⅰ)求证:VC⊥平面ABC;
(Ⅱ)已知AC=1,VC=2,AB=3,点M为线段VB的中点,求两面角B-MA-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题的说法错误的是(  )
A.若复合命题p∧q为假命题,则p,q都是假命题
B.“x=1”是“x2-3x+2=0”的充分不必要条件
C.对于命题p:?x∈R,x2+x+1>0 则¬p:?x∈R,x2+x+1≤0
D.命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.给出下列四个命题:
①已知函数f(x)=$\left\{\begin{array}{l}{1,(x为有理数)}\\{0,(x为无理数)}\end{array}\right.$,则f(x)为偶函数;
②函数y=(x+1)2+1(x≥0)与函数y=-1+$\sqrt{x-1}$(x≥1)互为反函数;
③函数f(x)=e-xx2在x=2处取得极大值;
④已知函数y=f(x)的图象在M(1,f(1))处的切线方程是y=$\frac{1}{2}$x+2,则f(1)+f′(1)=3.
其中真命题的代号是①②③④(写出所有真命题的代号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若复数(2+i)(1+ai)是纯虚数(i是虚数单位,a是实数),则a等于(  )
A.-1B.$-\frac{1}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.定义min{a,b}=$\left\{\begin{array}{l}a,a≤b\\ b,a>b\end{array}$,若f(x)=min{$\sqrt{x}$,|${\frac{1}{2}$x-1}|},且直线y=m与y=f(x)的图象有3个交点,横坐标分别为x1,x2,x3,则x1•x2•x3的最大值为1.

查看答案和解析>>

同步练习册答案