精英家教网 > 高中数学 > 题目详情
10.下列命题的说法错误的是(  )
A.若复合命题p∧q为假命题,则p,q都是假命题
B.“x=1”是“x2-3x+2=0”的充分不必要条件
C.对于命题p:?x∈R,x2+x+1>0 则¬p:?x∈R,x2+x+1≤0
D.命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”

分析 A.复合命题p∧q为假命题,则p,q至少有一个命题为假命题,即可判断出正误;
B.由x2-3x+2=0,解得x=1,2,可得:“x=1”⇒“x2-3x+2=0”,反之不成立,可判断出正误;
C.利用命题的否定定义,即可判断出正误;
D.利用逆否命题的定义即可判断出正误.

解答 解:A.复合命题p∧q为假命题,则p,q至少有一个命题为假命题,因此不正确;
B.由x2-3x+2=0,解得x=1,2,因此“x=1”是“x2-3x+2=0”的充分不必要条件,正确;
C.对于命题p:?x∈R,x2+x+1>0 则¬p:?x∈R,x2+x+1≤0,正确;
D.命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”,正确.
故选:A.

点评 本题考查了简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若$\frac{4}{{C}_{5}^{x}}$-$\frac{1}{{C}_{6}^{x}}$=$\frac{7}{{C}_{7}^{x}}$,则x=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知实数x,y满足(x-1)2+(y-4)2=1,求$\frac{xy-x}{{x}^{2}+(y-1)^{2}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某班级艺术团的成员唱歌、跳舞至少擅长一项,已知擅长唱歌的有5人,擅长跳舞的有4人,设从艺术社团的成员中随机选2人,每位成员被选中的概率相等,选出的人中既擅长唱歌又擅长跳舞的人数为X,且P(X>0)=$\frac{4}{5}$,求:
(Ⅰ)该班级艺术社团的人数;
(Ⅱ)随机变量X的均值E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.定义在(0,+∞)上的可导函数f(x)满足xf′(x)-f(x)=x,且f(1)=1.现给出关于函数f(x)的下列结论,正确的个数为(  )
①函数f(x)在$({\frac{1}{e},+∞})$上单调递增
②函数f(x)的最小值为$-\frac{1}{e^2}$
③函数f(x)有且只有一个零点
④对于任意x>0,都有f(x)≤x2
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设定义域为R的函数f(x)满足以下条件:①对任意x∈R,f(x)+f(-x)=0;②对任意x1,x2∈[1,a],当x2>x1时,有f(x2)>f(x1),则下列不等式一定成立的是(  )
①f(a)>f(0)
②f($\frac{1+a}{2}$)>f($\sqrt{a}$)  
③f($\frac{1-3a}{1+a}$)>f(-3)
④f($\frac{1-3a}{1+a}$)>f(-a)
A.①③B.②④C.①④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:?x0∈R,x02+x0+1≤0,则¬p为(  )
A.?x0∈R,x02+x0+1>0B.?x0∉R,x02+x0+1>0
C.?x∈R,x2+x+1>0D.?x∈R,x2+x+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某人有5把不同的钥匙,其中一把可以打开家门,因为天黑看不清应该使用哪一吧,所以只能逐个试.
(1)用ξ表示恰好把门打开时用过的钥匙把数,求ξ的值域;
(2)假设不超过2次就把门打开,算作“巧”;超过2次,算作“拙”.试设一个随机变量表示“巧”、“拙”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=($\frac{1}{3}$)x-log2x,实数a、b、c满足f(a)f(b)f(c)<0(0<a<b<c),若实数x0是方程f(x)=0的一个解,那么下列不等式中,不可能成立的是(  )
A.x0<aB.x0>bC.x0<cD.x0>c

查看答案和解析>>

同步练习册答案