精英家教网 > 高中数学 > 题目详情
18.某班级艺术团的成员唱歌、跳舞至少擅长一项,已知擅长唱歌的有5人,擅长跳舞的有4人,设从艺术社团的成员中随机选2人,每位成员被选中的概率相等,选出的人中既擅长唱歌又擅长跳舞的人数为X,且P(X>0)=$\frac{4}{5}$,求:
(Ⅰ)该班级艺术社团的人数;
(Ⅱ)随机变量X的均值E(X).

分析 (Ⅰ)设艺术社团既擅长唱歌又擅长跳舞共有x人,则艺术社团有(9-x)人,那么唱歌、跳舞只擅长一项的人数为(9-2x)人,利用P(X>0)=$\frac{4}{5}$,建立方程,即可求得艺术社团的人数;
(Ⅱ)先确定艺术社团有6人,既擅长唱歌又擅长跳舞共有3人,X的可能取值为0,1,2,计算概率,即可求得数学期望.

解答 解:(Ⅰ)设艺术社团既擅长唱歌又擅长跳舞共有x人,则艺术社团有(9-x)人,那么唱歌、跳舞只擅长一项的人数为(9-2x)人…(2分)
∵P(X>0)=P(X≥1)=1-P(X=0)=$\frac{4}{5}$,∴1-$\frac{{C}_{9-2x}^{2}}{{C}_{9-x}^{2}}$=$\frac{4}{5}$…(4分)
整理为:19x2-153x+288=0,∴x=3,
∴9-x=6,即艺术社团有6人…(6分)
(Ⅱ)依(Ⅰ)有:艺术社团有6人,既擅长唱歌又擅长跳舞共有3人.
X的可能取值为0,1,2,
P(X=0)=$\frac{{C}_{3}^{2}}{{C}_{6}^{2}}$=$\frac{1}{5}$,P(X=1)=$\frac{{C}_{3}^{1}{C}_{3}^{1}}{{C}_{6}^{2}}$=$\frac{3}{5}$;P(X=2)=$\frac{{C}_{3}^{2}}{{C}_{6}^{2}}$=$\frac{1}{5}$…(10分)
∴EX=0×$\frac{1}{5}$+1×$\frac{3}{5}$+2×$\frac{1}{5}$=1…(12分)

点评 本题考查离散型随机变量的概率与期望,解题的关键是正确求出概率,利用期望公式求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知定义在R上的奇函数f(x)的图象关于直线x=2对称,且x∈[0,2]时,f(x)=log2(x+1),则f(7)=(  )
A.-1B.1C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,F1,F2分别是椭圆的左、右焦点,直线l过点F2与椭圆交于A、B两点,且△F1AB的周长为4$\sqrt{2}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)是否存在直线l使△F1AB的面积为$\frac{4}{3}$?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示的茎叶图记录了华润万家在渭南城区甲、乙连锁店四天内销售请客的某项指标统计:
(1)求甲、乙连锁店这项指标的方差,并比较甲、乙该项指标的稳定性;
(2)每次都从甲、乙两店统计数据中随机各选一个进行对比分析,共选了3次(有放回选取),设选取的两个数据中甲的数据大于乙的数据的次数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.湖南卫视“我是歌手”这个节目深受广大观众喜爱,节目每周直播一次,在某周比赛中歌手甲、乙、丙竞演完毕,现场的某4位大众评审对这3位歌手进行投票,每位大众评审只能投一票且把票投给任一歌手是等可能的,求:
(Ⅰ)恰有2人把票投给歌手甲的概率;
(Ⅱ)投票结束后得票歌手的个数ζ的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow{a}$=(sinx,2cosx),$\overrightarrow{b}$=($2\sqrt{3}$cosx,-cosx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)在△ABC中,若∠A满足$f(A-\frac{π}{6})=1$,且△ABC的面积为8,求△ABC周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题的说法错误的是(  )
A.若复合命题p∧q为假命题,则p,q都是假命题
B.“x=1”是“x2-3x+2=0”的充分不必要条件
C.对于命题p:?x∈R,x2+x+1>0 则¬p:?x∈R,x2+x+1≤0
D.命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.a>0,b>0,a+b=1,则$\frac{2}{a}$+$\frac{3}{b}$的最小值为5+2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在三棱柱ABC-A1B1C1中,已知 AB=BC=1,CC1=2,AC1与平面 BCC1B1所成角为30°,AB⊥平面BB1C1C.
(Ⅰ)求证:BC⊥AC1
(Ⅱ)求三棱锥A-A1B1C1的高.

查看答案和解析>>

同步练习册答案