精英家教网 > 高中数学 > 题目详情
2.有一堆形状大小相同的珠子,其中只有一粒重量比其他的轻,某同学利用科学的算法,最多两次利用天平找出了这颗最轻的珠子,则这堆珠子最多的粒数是(  )
A.4B.5C.6D.7

分析 已知最多两次就找出这粒较轻的珠子,那么第二次所测的珠子的个数最多为3个;即将其中的两个放在天平的两边,若天平平衡,那么不在天平中的珠子就是最轻的珠子,如果天平不平衡,很较轻的珠子就是所找的珠子.同理,在第一次测量中,最多可测出三组珠子,因此这堆珠子最多有7个

解答 解:这堆珠子最多有7个.
将这堆珠子拿出一个,平均分成2组,将其中的两组放在天平的两边进行第一次测量;
若天平平衡,那么没称的珠子就是所找的珠子;
若天平不平衡,那么较轻的珠子就在较轻的那堆珠子里;
然后将较轻的那堆珠子进行第二次测量,同第一次测量一样,将其中两个放在天平的两端;
若天平平衡,那么没称的珠子就是所找的珠子;
若天平不平衡,那么较轻的珠子就是所找的珠子.
因此最多用两次即可找出较轻的珠子.
故选:D

点评 本题主要考查了算法,解答关键是找出每次能测量出的珠子(堆)的最多的个(堆)数,同时考查了分析问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若函数f(x)=x2-2x(x∈[0,3]),则f(x)的最小值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(α)=$\frac{cos(2π-α)•sin(\frac{π}{2}+α)}{cos(-α-π)}$.
(1)化简f(α);
(2)若f(α)=$\frac{4}{5}$,求cos(π+α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.方程f(x)=2x+x2-3的零点个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ln(x+$\frac{a}{x}$-2)(a>0)
(I)当1<a<4时,函数f(x)在[2,4]上的最小值为ln$\frac{3}{2}$,求a;
(Ⅱ)若存在x0∈(2,+∞),使得f(x0)<0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.一个容量为100的样本分成10组,组距为10,在对应的频率分布直方图中某个小长方形的高为0.03,那么该组的频数是30.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=$\left\{\begin{array}{l}x+2,x≤-1\\{x^2},-1<x<2\\ 2x,x≥2\end{array}$,则 $f(f(-\frac{3}{2}))$=$\frac{1}{4}$;若f(x)=3,则x=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知空间向量$\overrightarrow a=(x,4,3)$,$\overrightarrow b=(3,2,z)$,若$\overrightarrow{a}$∥$\overrightarrow{b}$,则xz=9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x3+ax2+bx+c的图象过原点,且f(x)在x=-1,x=3处取得极值.
(1)求函数f(x)的单调区间及极值;
(2)若函数y=f(x)与y=m的图象有且仅有一个公共点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案