精英家教网 > 高中数学 > 题目详情
10.已知x,y是[0,1]上的两个随机数,则x,y满足y>2x的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{4}{5}$

分析 以面积为测度,确定(x,y)所表示的平面区域,求出y>2x在正方形内的区域的面积,即可求概率.

解答 解:如图所示,正方形的面积为S=1×1=1,
非阴影部分的面积为S′=$\frac{1}{2}×1×\frac{1}{2}$=$\frac{1}{4}$,
所以y>2x的概率为$\frac{1}{4}$.
故选:A.

点评 本题考查几何概型,考查面积的计算,确定平面区域是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若圆C1(x-m)2+(y-2n)2=m2+4n2+10(mn>0)始终平分圆C2:(x+1)2+(y+1)2=2的周长,则$\frac{1}{m}$+$\frac{2}{n}$的最小值为(  )
A.$\frac{9}{2}$B.9C.6D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),过双曲线右焦点F倾斜角为$\frac{π}{4}$直线与该双曲线的渐近线分别交于M、N,O为坐标原点,若△OMF与△ONF的面积比等于2:1,则该双曲线的离心率等于(  )
A.$\sqrt{3}$或$\frac{\sqrt{10}}{3}$B.$\sqrt{3}$C.$\frac{\sqrt{10}}{3}$或$\sqrt{10}$D.$\frac{\sqrt{10}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow a=(3,4)$,$\overrightarrow b=(x,1)$,若$(\overrightarrow a-\overrightarrow b)⊥\overrightarrow a$,则实数x等于7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.f(x)=|x-2017|+|x-2016|+…+|x-1|+|x+1|+…+|x+2016|+|x+2017|,在不等式e2017x≥ax+1(x∈R)恒成立的条件下等式f(2018-a)=f(2017-b)恒成立,求b的取值集合(  )
A.{b|2016≤b≤2018}B.{2016,2018}C.{2018}D.{2017}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设f'(x)是函数y=f(x)的导数,f''(x)是f'(x)的导数,若方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.已知:任何三次函数既有拐点,又有对称中心,且拐点就是对称中心.设f(x)=$\frac{1}{3}{x^3}-2{x^2}+\frac{8}{3}$x+1,数列{an}的通项公式为an=2n-7,则f(a1)+f(a2)+…+f(a8)=(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f(x)=($\frac{1}{2}$)x,g(x)=|log3(x-1)|,则方程f(x)-g(x)=0的实根个数为(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=sin({\frac{π}{2}-x})sinx-\sqrt{3}{cos^2}x+\frac{{\sqrt{3}}}{2}$
(1)求f(x)的最大值及取得最大值时x值;
(2)若方程$f(x)=\frac{2}{3}$在(0,π)上的解为x1,x2,求cos(x1-x2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设(2-x)5=a0+a1x+a2x2+…+a5x5,则$\frac{{a}_{2}+{a}_{4}}{{a}_{1}+{a}_{3}}$的值为(  )
A.-$\frac{61}{60}$B.-$\frac{122}{121}$C.-$\frac{3}{4}$D.-$\frac{90}{121}$

查看答案和解析>>

同步练习册答案