精英家教网 > 高中数学 > 题目详情
椭圆x2+
y2
a2
=1(0<a<1)上离顶点A(0,a)距离最远的点恰好是另一个顶点A′(0,-a),则a的取值范围是
 
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:由题意设出椭圆上点的参数坐标,写出两点间的距离公式,配方后由函数取得最大值的条件可得
a2
1-a2
≥1,从而求得a的取值范围.
解答: 解:设P(cost,asint)是椭圆上任一点,
则|PA|=
cos2t+a2(1-sint)2

=
1-sin2t+a2-2a2sint+a2sin2t

=
-(1-a2)[sint+
a2
1-a2
]2+
a2
1-a2

∵最远的点恰好是另一个顶点(0,-a),
∴当cost=0,sint=-1时取最大值.
a2
1-a2
≥1,即a2≥1-a2,解得:a≤-
2
2
或a≥
2
2

∴a的取值范围为
2
2
≤a<1.
故答案为:
2
2
≤a<1.
点评:本题考查了椭圆的参数方程,考查了函数取得最值的条件,训练了利用配方法求函数的最值,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,则该几何体的表面积为(  )
A、54B、60C、66D、72

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=x3+
1
x
的图象关于
 
对称(原点或y轴).

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线x2=-
1
2
y的准线方程是(  )
A、y=
1
8
B、y=
1
2
C、x=
1
8
D、x=
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2-2x-1,g(x)=x2-2x-1(x∈[-2,4]).
(1)求f(x),g(x)的单调区间.
(2)求f(x),g(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出定义:若m-
1
2
<x≤m+
1
2
(其中m为整数),则m叫做离实数x最近的整数,记作(x)=m,在此基础上给出下列关于函数f(x)=log
1
2
|x-{x}|的四个命题:
①函数y=f(x)的定义域为R,值域为[1,+∞);
②函数y=f(x)在(-
1
2
,0)上是增函数;
③函数y=f(x)是周期函数,最小正周期为1;
④函数y=f(x)的图象关于直线x=
k
2
(k∈Z)对称.
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,且4cos2
A-B
2
-4sinAsinB=3.
(1)求C;
(2)若c=2
3
,a+b=ab,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x2-2ax+b|(x∈R).给出下列四个命题:
(1)f(x)必是偶函数;
(2)当f(0)=f(2)时,f(x)的图象必关于直线 x=1对称;
(3)若a2-b≤0时,则f(x)在区间[a,+∞)上是增函数;
(4)f(x)有最大值|a2-b|;
其中所有真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足:Sn=Sn-1+an-1+2n,且首项a1=1.求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案