精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C所对的边分别是a,b,c,已知c=1,C=
π
6

(1)若a=
3
,求b的值;
(2)求cosA•cosB的取值范围.
考点:正弦定理,三角函数中的恒等变换应用,余弦定理
专题:三角函数的求值
分析:(1)利用余弦定理列出关系式,将a,c以及cosC的值代入即可求出b的值;
(2)由C的度数求出A+B的度数,用A表示出B,代入原式利用两角和与差的正弦函数公式及二倍角的正弦、余弦函数公式化简,整理为一个角的正弦函数,根据A的范围求出这个角的范围,利用正弦函数的值域即可确定出范围.
解答: 解:(1)∵在△ABC中,a=
3
,c=1,C=
π
6

∴由余弦定理得:c2=a2+b2-2abcosC,即1=3+b2-3b,
解得:b=1或b=2;
(2)∵C=
π
6

∴B=
6
-A,
cosA•cosB=cosA•cos(
6
-A)=cosA(-
3
2
cosA+
1
2
sinA)=-
3
2
cos2A+
1
2
sinAcosA=-
3
4
+
1
4
sin2A-
3
4
cos2A=-
3
4
+
1
2
sin(2A-
π
3
),
∵0<A<
6
,即-
π
3
<2A-
π
3
3

∴-
3
2
<sin(2A-
π
3
)≤1,
则cosA•cosB的取值范围是(-
3
2
1
2
-
3
4
].
点评:此题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

化简:
sin(kπ-α)•cos[(k-1)π-α]
sin[(k+1)π+α]•cos(kπ+α)
(k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC内角A,B,C的对边分别为a,b,c,且
a+c
2b
=cosA+cosC.
(1)证明:A,B,C成等差数列;
(2)求y=cos2
A
2
+cos2
B
2
+cos2
C
2
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(x0,y0)是单位圆O:x2+y2=1上的点,
(1)若点A在第二象限,且y0=
4
5
时,求以A为切点的圆O的切线方程;
(2)若α的终边过点A,且y0>0,x0+y0=-
1
5
,求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足:a1=
5
6
,且an=
1
3
an-1+
1
3
(n∈N*,n≥2)
(1)求证:数列{an-
1
2
}为等比数列,并求数列{an}的通项公式;
(2)令bn=nan,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不在x轴上的动点P与点F(2,0)的距离是它到直线l:x=
1
2
的距离的2倍.
(Ⅰ)求点P的轨迹E的方程;
(Ⅱ)过点F的直线交E于B,C两点,试判断以线段BC为直径的圆是否过定点?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在一个盒子中装有6支圆珠笔,其中3支一等品,2支二等品和1支三等品,从中任取3支.求下列事件的概率:
(1)恰有一支一等品;
(2)既有一等品又有二等品.

查看答案和解析>>

科目:高中数学 来源: 题型:

M(5,0),若直线上存在点P使|PM|=4,称该直线为“切割型直线”,下列是“切割型直线”的所有序号有
 

①y=x+1 ②y=2 ③y=
4
3
x ④y=2x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知∠A=60°,∠B=45°,AC=6,则BC的长为
 

查看答案和解析>>

同步练习册答案