精英家教网 > 高中数学 > 题目详情
17.已知棱长为$\sqrt{2}$四面体ABCD的各顶点在同一个球面上,则该球的体积为(  )
A.$\frac{1}{3}$πB.$\frac{2}{3}$πC.$\frac{\sqrt{3}}{2}$πD.

分析 把四面体补成正方体,两者的外接球是同一个,求出正方体的棱长,然后求出正方体的对角线长,就是球的直径,即可求出球的体积.

解答 解:如图,将四面体补成正方体,则正方体的棱长是1,
正方体的对角线长为:$\sqrt{3}$,
则此球的体积为:$\frac{4}{3}$π×$(\frac{\sqrt{3}}{2})^{3}$=$\frac{\sqrt{3}}{2}$π
故选:C.

点评 本题是基础题,考查空间想象能力,正四面体的外接球转化为正方体外接球,使得问题的难度得到降低,问题得到解决,注意正方体的对角线就是球的直径,也是比较重要的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\left\{\begin{array}{l}{\frac{7x-3}{2x+2}\\ x∈(\frac{1}{2},1]}\\{-\frac{1}{3}x+\frac{1}{6}\\ x∈[0,\frac{1}{2}]}\end{array}\right.$,函数g(x)=asin($\frac{π}{6}$x)-2a+2(a>0),若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是[$\frac{1}{2}$,$\frac{4}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知a>0,b>0,且点(a,b)在直线x+y=2上,则2a+2b的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=7tan(-$\frac{1}{2}$x+$\frac{π}{3}$)的最小正周期是(  )
A.B.C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,在△OAB中,P为线段AB上的一点,若$\overrightarrow{{O}{P}}$=x$\overrightarrow{{O}{A}}$+y$\overrightarrow{{O}{B}}$,且$\overrightarrow{{B}{P}}$=2$\overrightarrow{{P}{A}}$,则$\frac{x}{y}$等于(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.${∫}_{1}^{a}$(3x+$\frac{1}{x}$)dx=$\frac{9}{2}$+ln2(a>1),则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设i是虚数单位,则复数i3+$\frac{2}{1-i}$=(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,⊙O是△ABC的外接圆,AB=AC,延长BC到点D,使得CD=AC,连结AD交⊙O于点E,连结BE,若∠D=35°,则∠ABE的大小为35°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.复数z满足(z+2)(1+i3)=2(i为虚数单位),则z=(  )
A.1-iB.1+iC.-1-iD.-1+i

查看答案和解析>>

同步练习册答案