精英家教网 > 高中数学 > 题目详情
6.如图,⊙O是△ABC的外接圆,AB=AC,延长BC到点D,使得CD=AC,连结AD交⊙O于点E,连结BE,若∠D=35°,则∠ABE的大小为35°.

分析 利用等腰三角形的性质、圆的同弧所对的圆周角相等性质即可得出.

解答 解:∵AC=CD,∠D=35°,
∴∠CAD=35°,∠ACB=70°.
∴∠CBE=35°.
∵AB=AC,
∴∠ABC=70°,
∴∠ABE=35°.
故答案为:35°.

点评 本题考查了等腰三角形的性质、圆的同弧所对的圆周角相等性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知正项数列{an}满足(n+1)an+12-nan2+an+1an=0,且a1=1,不等式“a1•a2+a2•a3+…+an•an+1≥m对任意n∈N*恒成立,则实数m的取值范围是(  )
A.(-∞,$\frac{1}{2}$]B.(-∞,$\frac{1}{2}$)C.(-∞,1]D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知棱长为$\sqrt{2}$四面体ABCD的各顶点在同一个球面上,则该球的体积为(  )
A.$\frac{1}{3}$πB.$\frac{2}{3}$πC.$\frac{\sqrt{3}}{2}$πD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足:a1=1,an=2an-1+1(n≥2)
(1)求证{an+1}是等比数列,并求{an}的通项;
(2)已知bn=log2(an+1),cn=an•bn,求数列|cn|的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知实数x,y满足不等式$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥a}\end{array}\right.$,且z=2x+y,若x的最大值与最小值之和是6,则实数a的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在区间(0,1)中随机地取出两个数,则两数之和大于$\frac{2}{3}$的概率是$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,B=60°,b=$\sqrt{3}$,则c+2a的最大值2$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={x|x2-x-12≤0},B={x|2m-1<x<m+1}
(1)若m=-1,求A∩∁RB;
(2)若A∪B=A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知sinα-cosα=$\frac{1}{2}$,且α∈(0,π),则sinα+cosα=(  )
A.$\frac{{\sqrt{7}}}{2}$B.$-\frac{{\sqrt{7}}}{2}$C.$±\frac{{\sqrt{7}}}{2}$D.$±\frac{1}{2}$

查看答案和解析>>

同步练习册答案