精英家教网 > 高中数学 > 题目详情
19.在五张牌中有三张K和两张A,如果不放回地一次抽取两张牌.记“第2次抽到扑克牌K的概率为x”,“在第一次抽到扑克牌K的条件下,第二次抽到扑克牌K的概率为y”,则实数x,y依次为(  )
A.$\frac{3}{5}{,^{\;}}\frac{1}{2}$B.$\frac{3}{5}{,^{\;}}\frac{3}{5}$C.$\frac{1}{2}{,^{\;}}\frac{1}{2}$D.$\frac{3}{5}{,^{\;}}\frac{2}{5}$

分析 利用互斥事件概率加法公式和相互独立事件概率乘法公式能求出x;利用条件概率计算公式能求出y.

解答 解:∵在五张牌中有三张K和两张A,如果不放回地一次抽取两张牌.
记“第2次抽到扑克牌K的概率为x”,
“在第一次抽到扑克牌K的条件下,第二次抽到扑克牌K的概率为y”,
∴x=$\frac{3}{5}×\frac{2}{4}+\frac{2}{5}×\frac{3}{4}$=$\frac{3}{5}$,
y=$\frac{\frac{3}{5}×\frac{2}{4}}{\frac{3}{5}}$=$\frac{1}{2}$.
故选:A.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意互斥事件概率加法公式、相互独立事件概率乘法公式、条件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.设随机变量Z的分布列为若$E(Z)=\frac{15}{8}$,则x=$\frac{1}{8}$y=$\frac{3}{8}$
 Z 1 2 3
 P 0.5 x y

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知实数a和b是区间[0,1]内任意两个数,则使b<a2的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.同时掷六个面分别标有数字1、2、3、4、5、6的质地均匀和大小相同的两枚正方形骰子,计算向上的点数之和是5的概率是$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设m为常数,抛物线y=x2+2mx-m3-2m2,则当m分别取0,-3,-2时,在平面直角坐标系中图象最恰当的是(这里省略了坐标轴)(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知函数f(x)=$\frac{1}{2}$x2-ax+(a-1)lnx,a>1.讨论函数f(x)的单调性;
(2)已知函数f (x)=lnx,g(x)=ex.设直线l为函数 y=f (x) 的图象上一点A(x0,f (x0))处的切线.问在区间(1,+∞)上是否存在x0,使得直线l与曲线y=g(x)也相切.若存在,这样的x0有几个?,若没有,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数y=sin(2x-$\frac{π}{6}$)-m在[$\frac{π}{2}$,π]上有两个零点,则m的取值范围为(  )
A.[$\frac{1}{2},1$]B.[-1,-$\frac{1}{2}$]C.[$\frac{1}{2},1$)D.(-1,-$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=4sin($\frac{1}{2}$x+$\frac{π}{6}$)的最小正周期是(  )
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2x3-3ax2+1(x∈R).
(1)若f(x)在x=2处取得极值,求实数a的值;
(2)求f(x)的单调递增区间;
(3)求函数f(x)在闭区间[0,2]的最小值.

查看答案和解析>>

同步练习册答案