精英家教网 > 高中数学 > 题目详情
11.已知函数y=sin(2x-$\frac{π}{6}$)-m在[$\frac{π}{2}$,π]上有两个零点,则m的取值范围为(  )
A.[$\frac{1}{2},1$]B.[-1,-$\frac{1}{2}$]C.[$\frac{1}{2},1$)D.(-1,-$\frac{1}{2}$]

分析 根据正弦函数的性质,求出y=sin(2x-$\frac{π}{6}$)在[$\frac{π}{2}$,π]上图象,由题意,函数y=sin(2x-$\frac{π}{6}$)-m在[$\frac{π}{2}$,π]上有两个零点,即它们图象有两个交点.利用数形结合法求解即可.

解答 解:∵x在[$\frac{π}{2}$,π]上,
∴(2x-$\frac{π}{6}$)∈[$\frac{5π}{6}$,$\frac{11π}{6}$],
令2x-$\frac{π}{6}$=t,
则t∈[$\frac{5π}{6}$,$\frac{11π}{6}$],
那么y=sint的图象与y=m两个交点,
当t=$\frac{7π}{6}$或$\frac{11π}{6}$时,y=$-\frac{1}{2}$,
由图象可知:
m在(-1,-$\frac{1}{2}$]时,函数y=m与函数y=sint即y=sin(2x-$\frac{π}{6}$)两个交点,即有两个零点.
故选D.

点评 本题主要考察了三角函数的图象及性质的运用和与函数y=m的零点即交点问题.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.某公司计划在一次联谊会中设一项抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖;奖金300元,三球号码都连号为二等奖,奖金600元;三球号码分别为1,5,10为一等奖,奖金2400元;其余情况无奖金.求员工甲抽奖一次所得奖金X的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在一次物理与化学两门功课的联考中,备有6到物理题,4道化学题,共10道题可供选择.要求学生从中任意选取5道作答,答对4道或5道即为良好成绩,每道题答对与否相互没有影响,设随机变量ξ为所选5道题中化学题的题数.
(1)求ξ的分布列及其均值;
(2)若学生甲随机选定了5道题,且答对任意一题的概率均为0.6,求甲没有取得良好成绩的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在五张牌中有三张K和两张A,如果不放回地一次抽取两张牌.记“第2次抽到扑克牌K的概率为x”,“在第一次抽到扑克牌K的条件下,第二次抽到扑克牌K的概率为y”,则实数x,y依次为(  )
A.$\frac{3}{5}{,^{\;}}\frac{1}{2}$B.$\frac{3}{5}{,^{\;}}\frac{3}{5}$C.$\frac{1}{2}{,^{\;}}\frac{1}{2}$D.$\frac{3}{5}{,^{\;}}\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某工厂生产A,B两种型号的产品,每种型号的产品在出厂时按质量分为一等品和二等品,为便于掌握生产状况,质检时将产品分为每20件一组,分别记录每组一等品的件数.现随机抽取了5组的质检记录,其一等品数茎叶图如图所示:
(Ⅰ)试根据茎叶图所提供的数据,分别计算A、B两种产品为一等品的概率PA、PB
(Ⅱ)已知每件产品的利润如表所示,用ξ、η分别表示一件A、B型产品的利润,在(Ⅰ)的条件下,求ξ、η的分布列及数学期望(均值)Eξ、Eη;
一等品二等品
A型4(万元)3(万元)
B型3(万元)2(万元)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.下列关于回归分析的说法正确的是④⑤(填上所有正确说法的序号)
①相关系数r越小,两个变量的相关程度越弱;
②残差平方和越大的模型,拟合效果越好;
③用相关指数R2来刻画回归效果时,R2越小,说明模型的拟合效果越好;
④用最小二乘法求回归直线方程,是寻求使$\sum_{i=1}^n{{{({y_i}-b{x_i}-a)}^2}}$取最小值时的a,b的值;
⑤在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,这样的带状区域的宽度越窄,模型拟合精度越高.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.把正奇数从小到大按以下方式分钟:(1),(3,5),(7,9,11),(13,15,17,19),…,其中第n组有n个正奇数,若第m组第k个正奇数是 2015,则m+k=(  )
A.63B.64C.65D.66

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ex(ax2+bx+1)(其中a,b∈R),函数f(x)的导函数为f′(x),且f′(-1)=0.
(Ⅰ)若b=1,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)若函数f(x)在区间[-1,1]上的最小值为0,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=|x+1|+|x-2|.
(1)若函数$g(x)=\sqrt{|{x+1}|+|{x-2}|-a}$的定义域为R,试求a的取值范围;
(2)若f(x)=$\frac{{2{a^2}+4}}{{\sqrt{{a^2}+1}}}$成立,求x的取值范围.

查看答案和解析>>

同步练习册答案