精英家教网 > 高中数学 > 题目详情
16.下列关于回归分析的说法正确的是④⑤(填上所有正确说法的序号)
①相关系数r越小,两个变量的相关程度越弱;
②残差平方和越大的模型,拟合效果越好;
③用相关指数R2来刻画回归效果时,R2越小,说明模型的拟合效果越好;
④用最小二乘法求回归直线方程,是寻求使$\sum_{i=1}^n{{{({y_i}-b{x_i}-a)}^2}}$取最小值时的a,b的值;
⑤在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,这样的带状区域的宽度越窄,模型拟合精度越高.

分析 可以用来衡量模拟效果好坏的几个量分别是相关指数,残差平方和和相关系数,只有残差平方和越小越好,其他的都是越大越好.

解答 解:①相关系数r的绝对值越趋近于1,相关性越强;越趋近于0,相关性越弱,故错误;
②残差平方和越小,模型拟合的效果越好,故错误;
③用相关指数R2来刻画回归效果时,R2越大,说明模型的拟合效果越好;
④用最小二乘法求回归直线方程,是寻求使$\sum_{i=1}^n{{{({y_i}-b{x_i}-a)}^2}}$取最小值时的a,b的值,根据用最小二乘法求回归直线方程的方法,可知正确;
⑤在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,这样的带状区域的宽度越窄,模型拟合精度越高.
故答案为④⑤.

点评 本题主要考查线性相关指数的理解,解题的关键是理解对于拟合效果好坏的几个量的大小反映的拟合效果的好坏,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图在正方体中
(1)求异面直线BC1与CD1所成的角;
(2)求直线D1B与底面ABCD所成角的正弦值;
(3)求二面角D1-AC-D大小的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.同时掷六个面分别标有数字1、2、3、4、5、6的质地均匀和大小相同的两枚正方形骰子,计算向上的点数之和是5的概率是$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知函数f(x)=$\frac{1}{2}$x2-ax+(a-1)lnx,a>1.讨论函数f(x)的单调性;
(2)已知函数f (x)=lnx,g(x)=ex.设直线l为函数 y=f (x) 的图象上一点A(x0,f (x0))处的切线.问在区间(1,+∞)上是否存在x0,使得直线l与曲线y=g(x)也相切.若存在,这样的x0有几个?,若没有,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数y=sin(2x-$\frac{π}{6}$)-m在[$\frac{π}{2}$,π]上有两个零点,则m的取值范围为(  )
A.[$\frac{1}{2},1$]B.[-1,-$\frac{1}{2}$]C.[$\frac{1}{2},1$)D.(-1,-$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知箱内有质量和大小相同的20个红球,80个黑球,规定从中任意取出1个,记录它的颜色后再放回箱内,搅拌均匀后再任意取出1个,记录它的颜色后又放回箱内搅拌均匀,从此连续抽取三次.试求:
(1)事件A:“第一次取出黑球,第二次取出红球,第三次取出黑球”的概率;
(2)如果有50人分别依次进行这样(每人按规则均取球三次)的抽取,试推测约有多少人取出2个黑球,1个红球?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=4sin($\frac{1}{2}$x+$\frac{π}{6}$)的最小正周期是(  )
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,将菱形ABCD沿对角线BD折起,使得C点至C′,E点 在线段AC′上,若二面角A-BD-E与二面角E-BD-C′的大小分别为和45°和30°,则$\frac{AE}{EC′}$=(  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.抛物线y2=2px(p>0)焦点为F,在x轴上F的右侧有一点A,以FA为直径作圆C,圆C与抛物线x轴上方部分交于M,N两点;设圆C半径为R,证明$\frac{{|{FM}|+|{FN}|}}{R}$为定值;根据类比推理,椭圆也具有此性质,已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),F为左焦点,求$\frac{{|{FM}|+|{FN}|}}{R}$值(结果用离心率e表示)

查看答案和解析>>

同步练习册答案