精英家教网 > 高中数学 > 题目详情
15.函数y=$\frac{lg(x-2)}{\sqrt{{x}^{2}-1}}$的定义域是(2,+∞).

分析 根据对数函数以及二次根式的性质求出函数的定义域即可.

解答 解:由题意得:
$\left\{\begin{array}{l}{x-2>0}\\{{x}^{2}-1>0}\end{array}\right.$,解得:x>2,
故答案为:(2,+∞).

点评 本题考查了对数函数以及二次根式的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.2014年3月的“两会”上,李克强总理在政府工作报告中,首次提出“倡导全民阅读”.某学校响应政府倡导,在学生中发起读书热潮.现统计了从2014年下半年以来,学生每半年人均读书量,如下表:
时间2014年下半年2015年上半年2015年下半年2016年上半年2016年下半年
时间代号t12345
人均读书量y(本)45679
根据散点图,可以判断出人均读书量y与时间代号t具有线性相关关系.
(Ⅰ)求y关于t的回归方程$\widehat{y}$=$\widehat{b}$t+$\widehat{a}$;
(Ⅱ)根据所求的回归方程,预测该校2017年上半年的人均读书量.
附:回归直线的斜率和截距的最小二乘估公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{t}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设$\overrightarrow a,\overrightarrow b$都是非零向量,下列四个条件中,一定能使$\frac{\overrightarrow a}{|\overrightarrow a|}+\frac{\overrightarrow b}{|\overrightarrow b|}=0$成立的是(  )
A.$\overrightarrow a⊥\overrightarrow b$B.$\overrightarrow a$∥$\overrightarrow b$C.$\overrightarrow a=2\overrightarrow b$D.$\overrightarrow a=-\overrightarrow b$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.把下列角化成2kπ+α(0≤α≤2π,k∈Z)形式,写出终边相同的角的集合,并指出它是第几象限角.
(1)-$\frac{46π}{3}$;(2)-1485°;(3)-20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.给出以下三个命题:
①若ab≤0,则a≤0,b≤0;
②在ABC中,若sinA=sinB,则A=B;
③在一元二次方程ax2+bx+c=0中,若b2-4ac>0,则方程有实数根.
其中原命题、逆命题、否命题、逆否命题全都是真命题的是(  )
A.B.C.D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若cos($\frac{π}{4}$-θ)=m,则cos($\frac{3π}{4}$+θ)=-m(用m表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知圆的半径为π,则60°圆心角所对的弧长为(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{{π}^{2}}{3}$D.$\frac{2{π}^{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知tanα=$\frac{\sqrt{3}}{3}$,π<α<$\frac{3π}{2}$,则cosα-sinα=$\frac{1-\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.利用坐标轴平移化简下列曲线的方程,并指出新坐标原点在原坐标系中的坐标:
(1)x2+y2-6x+8y=0;
(2)x2+4x-3y-2=0.

查看答案和解析>>

同步练习册答案