精英家教网 > 高中数学 > 题目详情
3.集合M={x|lgx>0},N={x|x2≤4},则M∩N=(  )
A.(1,2)B.[1,2]C.(1,2]D.[1,2)

分析 求出M与N中不等式的解集分别确定出M与N,找出两集合的交集即可.

解答 解:由M中不等式变形得:lgx>0=lg1,
解得:x>1,即M=(1,+∞),
由N中不等式x2≤4,解得:-2≤x≤2,
∴N=[-2,2],
则M∩N=(1,2],
故选:C.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.如图,已知平面α∩平面β=l,α⊥β,A,B是直线l上的两点,C,D是平面β内的两点,且DA⊥l,CB⊥l,DA=4,AB=6,CB=8,P是平面α内的一动点,使得直线CP,DP与平面α所成角相等,则三角形PAB面积的最大值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在1,2,4,5这4个数中一次随机地取2个数,则所取的2个数的和为6的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{2}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow a$=(2,m+1),$\overrightarrow b$=(m+3,4),且($\overrightarrow a+\overrightarrow b}$)∥(${\overrightarrow a-\overrightarrow b}$),则m=(  )
A.1B.5C.1或-5D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在直角坐标系xOy中,A(-1,0),B(0,0),以AB为边在x轴上边作一个平行四边形,满足tan∠CAB•tan∠DBA=$\frac{1}{2}$,E($\frac{{\sqrt{2}}}{2}$,0),则CE长的取值范围是(  )
A.$(1,1+\frac{{\sqrt{2}}}{2})$B.$(1-\frac{{\sqrt{2}}}{2},1)$C.$(1-\frac{{\sqrt{3}}}{2},1+\frac{{\sqrt{2}}}{2})$D.$(1-\frac{{\sqrt{2}}}{2},1+\frac{{\sqrt{2}}}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知平面向量$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$,且|$\overrightarrow a$+2$\overrightarrow b}$|=2$\sqrt{3}$,|${\overrightarrow b}$|=1,则|$\overrightarrow a}$|=(  )
A.1B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设a,b表示不同的直线,α,β表示不同的平面,则下列说法正确的是(  )
A.若a∥α,b∥β,α∥β,则a∥b
B.若a∥α,b∥β,a∥b,则α∥β
C.若a,b是异面直线,a∥α,b∥β,a?β,b?α,则α∥β
D.若a,b是异面直线,a∥α,b∥β,a?β,b?α,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知复数z=$\frac{1+i}{1+2i}$(i为虚数单位),则(  )
A.z的实部为$-\frac{1}{5}$B.z的虚部为$-\frac{1}{5}i$
C.$|z|=\frac{3}{5}$D.z的共轭复数为$\frac{3}{5}+\frac{1}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.圆ρ=2cosθ与圆ρ=sinθ交于O,A两点.
(Ⅰ)求直线OA的斜率;
(Ⅱ)过O点作OA的垂线分别交两圆于点B,C,求|BC|.

查看答案和解析>>

同步练习册答案