精英家教网 > 高中数学 > 题目详情
12.若a>0,则函数y=ax-1+1的图象经过定点(  )
A.(1,2)B.(2,1)C.(0,1+$\frac{1}{a}$)D.(2,1+a)

分析 利用图象平移和指数函数过定点的性质得出答案.

解答 解:∵y=ax-1+1的图象是由y=ax的图象先向右平移1个单位再向上平移1个单位得到的,且y=ax的图象过定点(0,1),
∴y=ax-1+1的图象过定点(1,2).
故选:A.

点评 本题考查了函数的图象平移,指数函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知抛物线C:y2=8x的焦点F与双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点重合,C的准线与E交于A,B,若|$\overrightarrow{AB}$|=6,则E的方程为x2-$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知F是抛物线y2=x的焦点,过F的直线l交抛物线与A,B两点,且|AB|=3,则线段AB的中点到y轴的距离为$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=eax-x,其中a≠0,若对一切x∈R,f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题中,正确的个数为(  )
(1)函数y=$\frac{1}{{a}^{x}}$(a>0,a≠1)不是指数函数
(2)指数函数不具有奇偶性
(3)指数函数在其定义域上是单调函数.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列通项an=lg[100×$(\frac{\sqrt{2}}{2})$n-1]
(1)写出这个数列的前三项;
(2)求证:数列{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,P是平行四边形ABCD外一点,E,F分别是PC,PD的中点,判断EF与平面PAB是否平行?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=$\sqrt{\sqrt{3}-tan2x}$的定义域是($\frac{kπ}{2}$-$\frac{π}{4}$,$\frac{kπ}{2}$+$\frac{π}{6}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2-2a(-1)klnx(k∈N*,a∈R且a>0).
(1)讨论函数f(x)的单调性;
(2)若k=2016时,关于x的不等式f(x)≥2ax对任意的x∈[e,+∞)恒成立,e为自然对数的底数,求正数a的取值范围;
(3)若函数y=g(x)在x=x0处取得极大值或极小值,则称x0为函数y=g(x)的极值点.若k=2016,函数g(x)=$\frac{1}{a}$f(x)-$\frac{1}{a}$x2+x-$\frac{m}{x}$(m∈R)有两个极值点x1,x2,且x1<x2,试判断g(x2)与x2-1大小,并证明你的结论.

查看答案和解析>>

同步练习册答案