精英家教网 > 高中数学 > 题目详情
13.已知a、b∈R,a2+ab+b2=3,则a2-ab+b2的最大值与最小值之和为[1,9].

分析 由a2+ab+b2=3,可得$(a+\frac{1}{2}b)^{2}$+$(\frac{\sqrt{3}}{2}b)^{2}$=3,令$a+\frac{1}{2}b=\sqrt{3}cosθ$,$\frac{\sqrt{3}}{2}b=\sqrt{3}sinθ$,θ∈[0,2π),可得b=2sinθ,a=$\sqrt{3}cosθ-sinθ$.则a2-ab+b2=-$4sin(2θ+\frac{π}{6})$+5,利用三角函数的单调性即可得出.

解答 解:由a2+ab+b2=3,可得$(a+\frac{1}{2}b)^{2}$+$(\frac{\sqrt{3}}{2}b)^{2}$=3,
令$a+\frac{1}{2}b=\sqrt{3}cosθ$,$\frac{\sqrt{3}}{2}b=\sqrt{3}sinθ$,θ∈[0,2π),
可得b=2sinθ,a=$\sqrt{3}cosθ-sinθ$.
则a2-ab+b2=$(\sqrt{3}cosθ-sinθ)^{2}$-$(\sqrt{3}cosθ-sinθ)•2sinθ$+(2sinθ)2
=-$4sin(2θ+\frac{π}{6})$+5,
∵$sin(2θ+\frac{π}{6})$∈[-1,1],
∴a2-ab+b2∈[1,9].
故答案为:[1,9].

点评 本题考查了三角函数的代换、三角函数的单调性、配方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.定义空间两个向量的一种运算$\overrightarrow{a}$?$\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|sin<$\overrightarrow{a}$,$\overrightarrow{b}$>,则关于空间向量上述运算的以下结论中:
①$\overrightarrow{a}$?$\overrightarrow{b}$=$\overrightarrow{b}$?$\overrightarrow{a}$;     
②λ($\overrightarrow{a}$?$\overrightarrow{b}$)=(λ$\overrightarrow{a}$)?$\overrightarrow{b}$;  
③($\overrightarrow{a}$+$\overrightarrow{b}$)?$\overrightarrow{c}$=($\overrightarrow{a}$?$\overrightarrow{c}$)+($\overrightarrow{b}$?$\overrightarrow{c}$);
④若$\overrightarrow{a}$=(x1,y1),$\overrightarrow{b}$=(x2,y2),则$\overrightarrow{a}$?$\overrightarrow{b}$=|x1y2-x2y1|.
其中恒成立的有(  )
A.①④B.①③C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.为了解某商场旅游鞋的日销售情况,现抽取部分顾客购鞋的尺码,将所得数据绘成如图所示频率分布直方图,已知图中从左到右前三组的频率之比为1:2:3,第二组的频数为10.
(1)用频率估计概率,求尺码落在区间(37.5,43.5]概率约是多少?
(2)从尺码落在区间(37.5,39.5](43.5,45.5]顾客中任意选取两人,记在区间(43.5,45.5]的人数为X,求X的分布列及数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若z=1+i,则z•$\overline{z}$+|$\overline{z}$|-1=(  )
A.2$\sqrt{2}$-1B.$\sqrt{2}$+1C.$\sqrt{2}$+3D.2$\sqrt{2}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow a,\overrightarrow b$是垂直单位向量,|$\overrightarrow c|$=13,$\overrightarrow c•\overrightarrow a$=3,$\overrightarrow c•\overrightarrow b=4$,对任意实数t1,t2,求|$\overrightarrow c$-t1$\overrightarrow a$-t2$\overrightarrow b$|的最小值.(  )
A.12B.13C.14D.144

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|${C}_{x}^{4}$>${C}_{x}^{6}$},B={x|${C}_{10}^{x}$=${C}_{10}^{3x-2}$},C={x|${A}_{9}^{x}$>${C}_{4}^{2}$${A}_{9}^{x-2}$},全集U=A∪B∪C,现从U中每次取出2奇2偶四个数.(提示:规定${A}_{n}^{0}$=1,${C}_{n}^{0}$=1.n∈N*,本题在此规定下考虑定义域!)
(1)能组成多少个无重复数字的四位奇数;
(2)能组成多少个被5除余2的无重复数字的四位数?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知某正弦函数的图象如图所示,写出符合图象的一个函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.数列{an},a1=1,a2=1,an+2=(1+sin2$\frac{nπ}{2}$)an+4cos2$\frac{nπ}{2}$,则a9的值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,且过点(1,$\frac{\sqrt{6}}{3}$),求椭圆C的方程.

查看答案和解析>>

同步练习册答案