精英家教网 > 高中数学 > 题目详情
3.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,PA⊥平面ABCD,BC=AP=5,AB=3,AC=4,M,N分别在线段AD,CP上,且$\frac{AM}{MD}$=$\frac{PN}{NC}$=4.
(Ⅰ)求证:MN∥平面PAB;
(Ⅱ)求三棱锥P-AMN的体积.

分析 (I)在AC上取一点Q,使得$\frac{AQ}{QC}=4$,则MQ∥AB,NQ∥PA,故平面MNQ∥平面PAB,于是MN∥平面PAB;
(II)过C作CH⊥AD,垂足为H,计算CH,则N到平面PAD的距离h=$\frac{4}{5}CH$,代入棱锥的体积公式V=$\frac{1}{3}{S}_{△PAM}•h$计算即可.

解答 (Ⅰ)证明:在AC上取一点Q,使得$\frac{AQ}{QC}=4$,连接MQ,QN,
则$\frac{AM}{MD}=\frac{AQ}{QC}=\frac{PN}{NC}$,∴QN∥AP,MQ∥CD,
又CD∥AB,
∴MQ∥AB.
又∵AB?平面PAB,PA?平面PAB,MQ?平面MNQ,
NQ?平面MNQ
∴平面PAB∥平面MNQ,
又∵MN?平面MNQ,MN?平面PAB,
∴MN∥平面PAB.
(Ⅱ)解:∵AB=3,BC=5,AC=4,
∴AB⊥AC.
过C作CH⊥AD,垂足为H,则CH=$\frac{3×4}{5}$=$\frac{12}{5}$,
∵PA⊥平面ABCD,CH?平面ABCD,
∴PA⊥CH,又CH⊥AD,PA∩AD=A,PA?平面PAD,AD?平面PAD,
∴CH⊥平面PAD,
∵PC=$\sqrt{P{A}^{2}+A{C}^{2}}$=$\sqrt{41}$,$\frac{PN}{NC}=4$,
∴N到平面PAD的距离h=$\frac{4}{5}$CH=$\frac{48}{25}$,
∴VP-AMN=VN-PAM=$\frac{1}{3}{S}_{△PAM}•h$=$\frac{1}{3}×\frac{1}{2}×5×4×\frac{48}{25}$=$\frac{32}{5}$.

点评 本题考查了线面平行的判定,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知数列{an}的通项公式an=11-2n,设Tn=|a1|+|a2|+…+|an|,则T10的值为50.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),圆O:x2+y2=r2(0<r<b).当圆O的一条切线l:y=kx+m与椭圆E相交于A,B两点.
(Ⅰ)当k=-$\frac{1}{2}$,r=1时,若点A,B都在坐标轴的正半轴上,求椭圆E的方程;
(Ⅱ)若以AB为直径的圆经过坐标原点O,探究a,b,r是否满足$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$=$\frac{1}{{r}^{2}}$,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|x2-2x-3<0},B={x|x≥2},则A∩B=(  )
A.(2,3]B.[2,3]C.(2,3)D.[2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知菱形ABCD的边长为2,E为AB的中点,∠ABC=120°,则$\overrightarrow{DE}$•$\overrightarrow{BD}$的值为(  )
A.3B.-3C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.现有$\frac{n(n+1)}{2}$(n≥2,n∈N*)个给定的不同的数随机排成一个下图所示的三角形数阵:

设Mk是第k行中的最大数,其中1≤k≤n,k∈N*.记M1<M2<…<Mn的概率为pn
(1)求p2的值;
(2)证明:pn>$\frac{{C}_{n+1}^{2}}{(n+1)!}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.${(\frac{5}{{\sqrt{x}}}-x)^m}$的展开式中各项系数的和为256,则该展开式的二项式系数的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若实数x、y满足|x|≤y≤1,则x2+y2+2x的最小值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|x-1|-|2x+1|的最大值为m
(1)作函数f(x)的图象
(2)若a2+b2+2c2=m,求ab+2bc的最大值.

查看答案和解析>>

同步练习册答案