(本小题满分10分)已知命题p:函数在R上是减函数;命题q:在平面直角坐标系中,点在直线的左下方。若为假,为真,求实数的取值范围
(-3,4)
解析试题分析:解:f ′(x)=3ax2+6x-1,∵函数f(x)在R上是减函数,
∴f ′(x)≤0即3ax2+6x-1≤0(x∈R).
(1)当a=0时,f ′(x)≤0,对x∈R不恒成立,故a≠0.
(2)当a≠0时,要使3ax2+6x-1≤0对x∈R恒成立,
应满足,即,∴p:a≤-3. …………5分
由在平面直角坐标系中,点在直线的左下方,
得∴q:, …………7分
:a≤-3;:
综上所述,a的取值范围是(-3,4).…………10分
考点:本试题考查了命题的真值,函数性质。
点评:解决该试题的关键是利用函数单调性和二元一次不等式的表示的区域可知a的范围。细节是理解且为真,或为假,得到必有一真一假,得到参数的范围,属于中档题。
科目:高中数学 来源: 题型:解答题
已知p:f(x)=,且|f(a)|<2;q:集合A={x|x2+(a+2)x+1=0,x∈R},且A≠Ø.若p∨q为真命题,p∧q为假命题,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com