精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=|log2|x-3||,且关于x的方程[f(x)]2+af(x)+b=0有6个不同的实数解,若最小实数解
为-5,则a+b的值为-3.

分析 先作出函数f(x)=|log2|x-3||的图象,令t=f(x),那么方程[f(x)]2+af(x)+b=0转化成了t2+at+b=0,因为方程[f(x)]2+af(x)+b=0有6个不同的实数解,则t2+at+b=0有一个正根和一个零根.最小实数解为-5,即f(-5)=3,从而得到方程t2+at+b=0的两个根,利用韦达定理,即可求得a+b的值.

解答 解:先作出函数f(x)=|log2|x-3||的图象,
∵关于x的方程[f(x)]2+af(x)+b=0有6个不同的实数解,
令t=f(x),那么方程[f(x)]2+af(x)+b=0转化成了t2+at+b=0,
则方程则t2+at+b=0有一个正根和一个零根
又∵最小实数解为-5,
∴f(-5)=3,
∴方程t2+at+b=0的两个根分别为:0,3;
利用韦达定理,a=-3,b=0
所以a+b=-3
故答案为-3.

点评 本题考查了函数与方程的综合运用,同时考查了方程的根与函数零点的关系.属于中档偏难的题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,x≥0}\\{4x-{x}^{2},x<0}\end{array}\right.$,若f(2a+1)>f(a-2),则实数a的取值范围是(-∞,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若a∈[0,1],b∈[0,1],则函数y=x3+$\sqrt{a}{x^2}$+bx+2为增函数的概率为(  )
A.$\frac{5}{6}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.正方体ABCD-A1B1C1D1中,则正四面体D-A1BC1的表面积与正方体的表面积之比是(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知命题p:-3≤x≤9,命题q:x2+2x+1-m2≤0(m>0),若?p是?q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知复数Z满足(1-i)z=1+i,则复数|Z|=(  )
A.$\sqrt{2}$B.1C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=sin(ωx+φ)对任意的x∈R都有f($\frac{π}{4}$-x)=f($\frac{π}{4}$+x),若函数g(x)=2cos(ωx+φ)-1,则g($\frac{π}{4}$)的值为(  )
A.-3B.1C.-1D.1或-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.阅读如图的程序的框图,则输出S=50.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.不等式|x+3|-|x-1|≤a对任意实数x恒成立,则实数a的取值范围是(  )
A.[4,+∞)B.(4,+∞)C.[2,+∞)D.(2,+∞)

查看答案和解析>>

同步练习册答案