精英家教网 > 高中数学 > 题目详情
16.在长方形ABCD中,AD=2,AB=4,点E是边CD上的一动点,将△ADE沿直线AE翻折到△AD1E,使得二面角D1-AE-B为直二面角,则cos∠D1AB的最大值为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

分析 根据二面角的定义,结合余弦定理求出BD12的长度关系,结合三角函数的有界性进行求解即可.

解答 解:在长方形ABCD中,过D作DO⊥AE于O,
设∠DAE=θ,则0<θ<$\frac{π}{2}$,
则折叠后使得二面角D1-AE-B为直二面角,
则D1A⊥面AEB,则△D1OB是直角三角形,
∵DO=2sinθ,AO=2cosθ,
∴OB2=4cos2θ+16-2×2cosθ×4×cos($\frac{π}{2}$-θ)=4cos2θ+16-2×2cosθ×4×sinθ
=4cos2θ-8sin2θ+16,
则BD12=OD12+OB2=4sin2θ+16+4cos2θ-8sin2θ=20-8sin2θ,
∵BD12=4+16-2×4×2cos∠D1AB=20-16cos∠D1AB,
∴要使2cos∠D1AB最大,则只需要BD12最小即可,
∵0<θ<$\frac{π}{2}$,∴0<2θ<π,
即当sin2θ=1时,BD12最小,此时BD12=20-8=12,
由20-16cos∠D1AB=12得cos∠D1AB=$\frac{1}{2}$,
故选:B

点评 本题主要考查二面角的应用,结合余弦定理转化为三角函数关系是解决本题的关键.考查学生的运算和转化能力,综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.某几何体的三视图如图,则该几何体的体积为$\frac{π}{3}$,表面积为$2+\frac{1+\sqrt{5}}{2}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.a,b,c分别是△ABC角A,B,C的对边,△ABC的面积为$\sqrt{3}$,且$b=2,sinC=\frac{1}{2}$,则c=2或$2\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.平行直线l1:3x+4y-12=0与l2:6x+8y-15=0之间的距离为(  )
A.$\frac{3}{10}$B.$\frac{9}{10}$C.$\frac{3}{5}$D.$\frac{9}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.△ABC中,D为BC的中点,G为△ABC的重心,AB=AD.BG=2,则△ABC的面积最大值为7.2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知抛物线C:x2=4y,点M是曲线C上的动点,点N的坐标是(0,2),以M点为圆心,MN为半径的圆交x轴于A,B两点.
(Ⅰ)当M是坐标原点时,求抛物线C的准线被圆M截得的弦长;
(Ⅱ)当M在抛物线上移动时.
(i)|AB|是否为定值?证明你的结论;
(ii)若$\frac{|AN|}{|BN|}=t$,求t$+\frac{1}{t}$的最大值,并求出此时圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.(2x+1)5(x2-$\frac{2}{x}$+$\frac{1}{{x}^{4}}$)的展开式的常数项是60.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=2cos2x+sin2x-1,则以下判断中错误的是(  )
A.函数f(x)在区间$[{\frac{π}{8},\frac{5π}{8}}]$上是减函数
B.直线x=$\frac{π}{8}$是函数f(x)图象的一条对称轴
C.若$x∈[{0,\frac{π}{2}}]$,则函数f(x)的值域是$[{0,\sqrt{2}}]$
D.函数f(x)的图象可由函数y=$\sqrt{2}$sin2x的图象向左平移$\frac{π}{8}$而得到

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如果两个非零向量$\overrightarrow{a}$和$\overrightarrow{b}$满足等式|$\overrightarrow{a}$|+|$\overrightarrow{b}$|=|$\overrightarrow{a}$+$\overrightarrow{b}$|,则$\overrightarrow{a}$,$\overrightarrow{b}$应满足(  )
A.$\overrightarrow{a}•\overrightarrow{b}$=0B.$\overrightarrow{a}•\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|C.$\overrightarrow{a}•\overrightarrow{b}$=-|$\overrightarrow{a}$|•|$\overrightarrow{b}$|D.$\overrightarrow{a}$∥$\overrightarrow{b}$

查看答案和解析>>

同步练习册答案