精英家教网 > 高中数学 > 题目详情
4.若集合A={x|0≤2x-1≤1}.B={x|y=$\sqrt{4x-3}$+lg(7-x)},集合C={x|x2-(2a+1)x+a(a+1)≤0}
(Ⅰ)求A∪B
(Ⅱ)若A⊆C,求实数a的取值范围.

分析 (Ⅰ)先分别求出集合A和B,由此能求出A∪B.
(Ⅱ)先分别求出集合A和集合C,由A⊆C,列出不等式组,由此能求出实数a的取值范围.

解答 解:(Ⅰ)∵集合A={x|0≤2x-1≤1}={x|$\frac{1}{2}≤x≤1$},
B={x|y=$\sqrt{4x-3}$+lg(7-x)}={x|$\frac{3}{4}≤x<7$},
∴A∪B={x|$\frac{1}{2}≤x<7$}.
(Ⅱ)∵集合A={x|0≤2x-1≤1}={x|$\frac{1}{2}≤x≤1$},
集合C={x|x2-(2a+1)x+a(a+1)≤0}={x|(x-a)[x-(a+1)]≤0}={x|a≤x≤a+1},
A⊆C,
∴$\left\{\begin{array}{l}{a≤\frac{1}{2}}\\{a+1≥1}\end{array}\right.$,解得0$≤a≤\frac{1}{2}$.
∴实数a的取值范围是[0,$\frac{1}{2}$].

点评 本题考查并集的求法,考查实数的取值范围的求法,考查交集、子集、集合的包含关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.将一个半径为R的球形铝锭铸造成一个底面半径为R,高为H的圆柱体,则$\frac{H}{R}$=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若$C_n^0$+$2C_n^1$+$4C_n^2$+…+${2^n}C_n^n$=729,则n=6,$C_n^1+C_n^2+C_n^3+…+C_n^n$=63.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知A($\frac{3\sqrt{2}}{2}$,$\frac{7}{4}$),B(3$\sqrt{2}$,$\frac{5}{2}$),动点P满足|PB|=2|PA|,P的轨迹为曲线C,y轴左侧的点E在直线AB上,圆心为E的圆与x轴相切,且被轴截得的弦长为$\frac{1}{2}$
(Ⅰ)求C和圆E的方程
(Ⅱ)若直线l与圆E相切,且与C恰有一个公共点,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知奇函数y=f(x),当x>0时f(x)=x2-2x,则当x<0时,f(x)=-x2-2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,过坐标原点O的圆M(圆心M在第Ⅰ象限)与x轴正半轴交于点A(2,0),弦OA将圆M截得两段圆弧的长度比为1:5.
(1)求圆M的标准方程;
(2)设点B是直线l:$\sqrt{3}$x+y+2$\sqrt{3}$=0上的动点,BC、BD是圆M的两条切线,C、D为切点,求四边形BCMD面积的最小值;
(3)若过点M且垂直于y轴的直线与圆M交于点E、F,点P为直线x=5上的动点,直线PE、PF与圆M的另一个交点分别为G、H(GH与EF不重合),求证:直线GH过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow a=(1,2)$,点A(-1,1),B(2,y),若向量$\overrightarrow{AB}$∥$\overrightarrow a$,则实数y的值为(  )
A.5B.7C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=x3+bx2+ax-b2-7b在x=1处取极大值10,则$\frac{b}{a}$的值为(  )
A.-2B.-$\frac{2}{3}$C.-2或-$\frac{2}{3}$D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AD=2$\sqrt{3}$,AB=1,E为BC的中点,G为线段AB上的一点,满足$\overrightarrow{BG}=λ\overrightarrow{BC}$.
(1)当λ=$\frac{1}{2}+\frac{{\sqrt{6}}}{6}$时,求证:PG⊥DG.
(2)在(1)的条件下,若PA=2$\sqrt{3}$,求G到平面PDE的距离.

查看答案和解析>>

同步练习册答案