精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-3x+4,求:
(1)求该函数的单调区间;
(2)求曲线y=f(x)在点P(2,6)处的切线方程.
考点:利用导数研究函数的单调性,利用导数研究曲线上某点切线方程
专题:综合题,导数的综合应用
分析:(1)求出导数f′(x),在定义域内解不等式f′(x)>0,f′(x)<0即可;
(2)切线斜率k=f′(2)=9,利用点斜式即可求得切线方程;
解答: 解:(1)∵f(x)=x3-3x+4,∴f′(x)=3x2-3=3(x+1)(x-1),
由f′(x)>0,得x<-1或x>1,由f′(x)<0,得-1<x<1,
∴f(x)的单调递增区间是(-∞,-1)和(1,+∞);单调递减区间是(-1,1).
(2)由(1)知f′(2)=9,即切线斜率为9,
∴曲线y=f(x)在点P(2,6)处的切线方程是:y-6=9(x-2),即y=9x-12.
点评:该题考查导数几何意义、利用导数研究函数的单调性,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
4
=1(a>0)的右焦点与抛物线y2=12x的焦点重合,则过该双曲线的左顶点且与直线y=2x+1平行的直线方程是(  )
A、y=-
1
2
x+1
B、y=-
1
2
x+
1
2
C、y=2x+2
5
D、y=2x+10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1的左右焦点分别为F1,F2,过左焦点F1作直线l与双曲线左右两支分别交于A、B两点,若△ABF2为正三角形,则双曲线的渐近线方程为(  )
A、±
6
x+y=0
B、x±
6
y=0
C、
3
x±y=0
D、x±
3
y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2sinx+5的最小正周期是(  )
A、
π
2
B、π
C、2π
D、4π

查看答案和解析>>

科目:高中数学 来源: 题型:

求值:sin12°cos18°+cos12°sin18°=(  )
A、
1
2
B、
3
2
C、
2
2
D、-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
是两个不共线的非零向量(t∈R).
(1)记
OA
=
a
OB
=t
b
OC
=
1
3
a
+
b
),那么当实数t为何值时,A,B,C三点共线?
(2)若|
a
|=|
b
|=1且
a
b
夹角为120°,那么实数x为何值时,|
a
+x
b
|的值最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx-x.
(1)当a=1时,求f(x)的极值;
(2)若f(x)≤a对x∈[1,+∞]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数z的共轭复数为
.
z
,已知(1+2i)
.
z
=4+3i,
(1)求复数z及
z
.
z

(2)求满足|z1-1|=|z|的复数z1对应的点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}前n项的和Sn=
1
2
n2+
1
2
n.
(1)求数列{an}的通项公式;
(2)已知n∈N*,证明:2a1+4a2+8a3+…+2nan=(n-1)2n+1+2.

查看答案和解析>>

同步练习册答案