精英家教网 > 高中数学 > 题目详情
10.已知定义在R上的奇函数f(x)满足f(x)=2x-4(x>0),则{x|f(x-1)>0}等于(  )
A.{x|x>3}B.{x|-1<x<1}C.{x|-1<x<1或x>3}D.{x|x<-1}

分析 根据函数奇偶性的性质先求出f(x)>0的解集,即可得到结论.

解答 解:当x>0时,由f(x)>0得2x-4>0,得x>2,
∵函数f(x)是奇函数,
当x<0时,-x>0,则f(-x)=2-x-4=-f(x),
即f(x)=4-2-x,x<0,
当x<0时,由f(x)>0得4-2-x>0,得-2<x<0,
即f(x)>0得解为x>2或-2<x<0,
由x-1>2或-2<x-1<0,
得x>3或-1<x<1,
即{x|f(x-1)>0}的解集为{x|-1<x<1或x>3},
故选:C.

点评 本题主要考查不等式的求解,根据函数奇偶性的性质先求出f(x)>0的解集是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.在等差数列{an}中,若a1=25,S9=S17,则该数列的前(  )项之和最大.
A.12B.13C.14D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设集合M={x|x≥2},集合N={x|x>-1},则 M∪N=(  )
A.{x|x≥2}B.{x|x>-1}C.{x|x<2}D.{x|x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若$|\overrightarrow a|=\sqrt{2},|\overrightarrow b|=2$且$(\overrightarrow a-\overrightarrow b)⊥\overrightarrow a$,则$\overrightarrow a$与$\overrightarrow b$的夹角是$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知角α的顶点在原点,始边与x轴的非负半轴重合,终边与单位圆相交于点$P(-\frac{3}{5},\frac{4}{5})$.
(Ⅰ)求sinα,cosα,tanα的值;
(Ⅱ)求$\frac{{2sin(π-α)-sin(\frac{π}{2}-α)}}{sin(2π-α)+cos(π+α)}$的值;
(Ⅲ)求$cos2α,tan(α+\frac{π}{4})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.直线(a-1)x-y+2a+1=0恒过定点(-2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.一个命题p的逆命题是一个假命题,则下列判断一定正确的是(  )
A.命题p是真命题B.命题p的否命题是假命题
C.命题p的逆否命题是假命题D.命题p的否命题是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)求z=2x+y的最大值,使式中的x、y满足约束条件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1.\end{array}\right.$
(2)求z=2x+y的最大值,使式中的x、y满足约束条件$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设全集为R,集合M={x∈R|x2-4x+3>0},集合N={x∈R|2x>4},则M∪N=(-∞,1)∪(2,+∞);M∩N=(3,+∞);∁R(M∩N)=(-∞,3].

查看答案和解析>>

同步练习册答案