精英家教网 > 高中数学 > 题目详情
2.一个命题p的逆命题是一个假命题,则下列判断一定正确的是(  )
A.命题p是真命题B.命题p的否命题是假命题
C.命题p的逆否命题是假命题D.命题p的否命题是真命题

分析 根据逆否命题的等价性进行判断.

解答 解:∵逆命题和否命题互为逆否命题,
∴它们的真假性相同,
依题意,则命题p的否命题是假命题,
故选:B.

点评 本题主要考查命题的真假判断,根据否命题和逆命题是逆否命题的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设F是椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点,过F的直线与椭圆C交于A,B两点,分别过A,B作椭圆C的切线并相交于点P,线段OP(O为坐标原点)交椭圆C于点Q,满足$\overrightarrow{OQ}=2\overrightarrow{QP}$,且$\overrightarrow{FQ}•\overrightarrow{OF}=0$,则椭圆C的离心率为$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点分别是F1,F2,如果椭圆C上的动点到点F1的距离的最大值是$\sqrt{3}+\sqrt{2}$,短轴一个端点到点F2的距离为$\sqrt{3}$.
(1)求椭圆C的方程;
(2)设过点F2且斜率为1的直线l与椭圆C交于A、B两点,求△ABF1的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知定义在R上的奇函数f(x)满足f(x)=2x-4(x>0),则{x|f(x-1)>0}等于(  )
A.{x|x>3}B.{x|-1<x<1}C.{x|-1<x<1或x>3}D.{x|x<-1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义在(1,+∞)上的函数f(x)满足:①f(2x)=cf(x)(c为正常数); ②当2≤x≤4时,f(x)=1-(x-3)2,若f(x)图象上所有极大值对应的点均落在同一条直线上,则c=(  )
A.1或$\frac{1}{2}$B.$\frac{1}{2}$或2C.1或2D.1或3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设偶函数f(x)对任意x∈R,都有f(x+3)=-$\frac{1}{f(x)}$,且当x∈[-3,-2]时,f(x)=4x,则f(113.5)=$\frac{1}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列说法正确的是(  )
A.命题“p∨q”为真命题,则命题“p”和命题“q”均为真命题
B.已知x∈R,则“x>1”是“x>2”的充分不必要条件
C.命题“?x∈R,x2-x>0”的否定是:“?x∈R,x2-x≤0”
D.命题“若am2<bm2,则a<b”的逆命题是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知A1A⊥平面ABC,BB1∥AA1,AB=AC=3,BC=2$\sqrt{5}$,AA1=$\sqrt{7}$,BB1=2$\sqrt{7}$,点E和F分别为BC和A1C的中点.
(1)求证:EF∥平面A1B1BA;
(2)求证:平面AEA1⊥平面BCB1
(3)求几何体ABCA1B1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.P是椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上的一点,A、B分别是圆(x+3)2+y2=1和(x-3)2+y2=1上的点,则|$\overrightarrow{PA}$|+|$\overrightarrow{PB}$|的取值范围是[8,12].

查看答案和解析>>

同步练习册答案