精英家教网 > 高中数学 > 题目详情
6.已知三梭锥P-ABC中,PA=4,AB=AC=2$\sqrt{3}$,BC=6,PA⊥面ABC,则此三棱锥的外接球的表面积为(  )
A.16πB.32πC.64πD.128π

分析 根据已知求出△ABC外接圆的半径,从而求出该三棱锥外接球的半径和三棱锥的外接球表面积.

解答 解:在△ABC中,AB=AC=2$\sqrt{3}$,BC=6,
所以cosA=$\frac{{(2\sqrt{3})}^{2}×2{-6}^{2}}{2×2\sqrt{3}×2\sqrt{3}}$=-$\frac{1}{2}$,
所以sinA=$\frac{\sqrt{3}}{2}$,
所以△ABC的外接圆半径r=$\frac{1}{2}$×$\frac{a}{sinA}$=$\frac{1}{2}$×$\frac{6}{\frac{\sqrt{3}}{2}}$=2$\sqrt{3}$,
所以三棱锥外接球的半径R2=r2+${(\frac{PA}{2})}^{2}$=${(2\sqrt{3})}^{2}$+22=16,
所以三棱锥P-ABC外接球的表面积S=4πR2=64π.
故选:C.

点评 本题考查了三棱锥的外接球体积与计算能力的应用问题,确定三棱锥的外接球半径是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.在平面直角坐标系xOy中,过定点Q(1,1)的直线与曲线y=$\frac{x}{x-1}$交于M,N两点,则$\overrightarrow{OQ}$•$\overrightarrow{OM}$-$\overrightarrow{OQ}$•$\overrightarrow{NO}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若实数a,b满足$\frac{4}{a}$+$\frac{1}{b}$=$\sqrt{ab}$,则ab的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=x2+ax+b对任意实数x都有f(2+x)=f(2-x),那么必有(  )
A.f(-1)<f(2)<f(4)B.f(2)<f(-1)<f(4)C.f(2)<f(4)<f(-1)D.f(4)<f(2)<f(-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)满足f(x+1)=x,函数g(x)=-x2+ax-b,且不等式g(x)≤0的解集是(-∞,1]∪[5,+∞).
(1)若φ(x)=g(x)-|f(x)|,求φ(x)的最大值;
(2)求不等式g(x)≥|f(x)|的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知复数z=$\frac{2i}{1+i}$,$\overline{z}$为复数z的共轭复数,则|$\overline{z}$|等于(  )
A.1B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=log2(x2-2x-3)的定义域为(  )
A.(-∞,-1)∪(3,+∞)B.[-1,3]C.(-∞,-1]∪[3,+∞)D.(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=t+6\\ y=3-\frac{1}{2}t\end{array}\right.$(参数t∈R),曲线C的参数方程为$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ+2\end{array}\right.$(参数θ∈[0,2π)).
①化曲线C的方程为普通方程,并指出它表示的是什么曲线;
②若将曲线C上的各点的纵坐标都压缩为原来的一半,得曲线C′.求曲线C′上的动点P到直线l距离的最大值及对应点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是12π,体积是$\frac{13π}{3}$.

查看答案和解析>>

同步练习册答案