分析 根据条件即可求出$∠AOB=\frac{π}{3}$,并可由$(\overrightarrow{c}-\overrightarrow{a})•(2\overrightarrow{c}-\overrightarrow{b})=0$得出$(\overrightarrow{c}-\overrightarrow{a})⊥(\overrightarrow{c}-\frac{1}{2}\overrightarrow{b})$,可取OB的中点D,并连接AD,从而可以得出点C在以AD为直径的圆上.可延长OA到A′,OB到B′,分别以OA,OB为邻边作平行四边形OAEB,以OA′,OB′为邻边作平行四边形OA′FB′,并延长AE交B′F于H,延长BE交A′F于G,从而平行四边形EHFG及其内部即为点P所在区域,取AD的中点O′,并连接O′E,O′F,可求出O′E,O′F的值,从而可以得出$|\overrightarrow{CP}|$的最小值和最大值,从而得出$|\overrightarrow{CP}|$的取值范围.
解答
解:$|\overrightarrow{a}|=1,|\overrightarrow{b}|=1$,∴$\overrightarrow{a}•\overrightarrow{b}=cos∠AOB=\frac{1}{2}$;
∴$∠AOB=\frac{π}{3}$;
由$(\overrightarrow{c}-\overrightarrow{a})•(2\overrightarrow{c}-\overrightarrow{b})=0$得,$(\overrightarrow{c}-\overrightarrow{a})•(\overrightarrow{c}-\frac{1}{2}\overrightarrow{b})=0$;
∴$(\overrightarrow{c}-\overrightarrow{a})⊥(\overrightarrow{c}-\frac{1}{2}\overrightarrow{b})$;
如图,作$\overrightarrow{OA}=\overrightarrow{a},\overrightarrow{OB}=\overrightarrow{b}$,$\overrightarrow{OC}=\overrightarrow{c}$,$∠AOB=\frac{π}{3}$,取OB中点D,连接CA,CD,则:$\overrightarrow{c}-\overrightarrow{a}=\overrightarrow{AC},\overrightarrow{c}-\frac{1}{2}\overrightarrow{b}=\overrightarrow{DC}$;
∴AC⊥DC;
∴C点在以AD为直径的圆上
以OA,OB为邻边作平行四边形OAEB,延长OA到A′,使OA′=2,延长OB到B′,使OB′=2,分别以OA′,OB′为邻边作平行四边形OA′FB′,延长BE交A′F于G,延长AE交B′F于H;
则图中阴影部分便为P点所在区域;
设AD的中点为O′,连接O′E,O′F,延长DA交FA′的延长线于D′;
据题意知,AD⊥OB,且AD=$\frac{\sqrt{3}}{2}$;
∴$O′A=\frac{\sqrt{3}}{4}$,$O′D′=\frac{3\sqrt{3}}{4}$,且AE=1,D′F=$\frac{5}{2}$;
∴$O′E=\sqrt{\frac{3}{16}+1}=\frac{\sqrt{19}}{4}$,$O′F=\sqrt{\frac{27}{16}+\frac{25}{4}}=\frac{\sqrt{127}}{4}$;
∴$|\overrightarrow{CP}|$的最小值为$\frac{\sqrt{19}-\sqrt{3}}{4}$,最大值为$\frac{\sqrt{127}+\sqrt{3}}{4}$;
∴$|\overrightarrow{CP}|$的取值范围为$[\frac{\sqrt{19}-\sqrt{3}}{4},\frac{\sqrt{127}+\sqrt{3}}{4}]$.
故答案为:[$\frac{\sqrt{19}-\sqrt{3}}{4},\frac{\sqrt{127}+\sqrt{3}}{4}$].
点评 考查单位向量的概念,向量数量积的计算公式,已知三角函数值求角,向量的数乘运算,以及向量垂直的充要条件,圆的直径所对的圆周角为直角,向量加法的平行四边形法则,以及直角三角形边的关系,数形结合解题的方法.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{2}$ | B. | 3 | C. | $\frac{9}{2}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}+1}{2}$ | B. | $\sqrt{3}+1$ | C. | $\frac{\sqrt{2}+1}{2}$ | D. | $\sqrt{2}+1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 甲比乙好 | B. | 乙比甲好 | C. | 甲乙一样好 | D. | 无法确定 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com