精英家教网 > 高中数学 > 题目详情
19.在平面直角坐标系内,已知$\overrightarrow{i}$,$\overrightarrow{j}$是两个互相垂直的单位向量,若$\overrightarrow{a}$=2$\overrightarrow{i}$-3$\overrightarrow{j}$,则向量用坐标表示$\overrightarrow{a}$=(2,-3).

分析 直接利用平面向量的正交分解及坐标表示,写出结果即可.

解答 解:在平面直角坐标系内,已知$\overrightarrow{i}$,$\overrightarrow{j}$是两个互相垂直的单位向量,若$\overrightarrow{a}$=2$\overrightarrow{i}$-3$\overrightarrow{j}$,
则向量用坐标表示$\overrightarrow{a}$=(2,-3).
故答案为:(2,-3).

点评 本题考查向量的坐标表示,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知角α的终边与$\frac{π}{3}$的终边相同,求在区间[0,2π)内与$\frac{α}{3}$终边相同的角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,棱长为a的正方体ABCD-A1B1C1D1中,点E、F、G分别为CD1、A1B1、B1C1的中点,则三棱锥A-EFG的体积为$\frac{{a}^{3}}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和Sn=23n-n2
(1)求证:{an}是等差数列;
(2)求数列{|an|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.讨论lnx=x3-2ex2+mx方程根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,A,B是椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的两个顶点,|AB|=$\sqrt{7}$,椭圆离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)若直线l∥AB,且与x,y轴分别交于点M,N,与椭圆交于E,F,如图所示,记△BEN与△AMF的面积分别为S1与S2,求$\frac{{S}_{1}}{{S}_{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥S-ABCD中,底面ABCD是正方形,侧棱SD⊥底面ABCD,SD=DC=2,E是SC的中点,作EF⊥SB交SB于F.
(Ⅰ)求证:SA∥平面EDB;
(Ⅱ)求证:SB⊥平面EFD;
(Ⅲ)求三棱锥E-BFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数f(x)=2x+lg(x+1)-2的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=ex-ax-1,
(Ⅰ)若函数f(x)在R上单调递增,求a的取值范围;
(Ⅱ)当a>0时,设函数f(x)的最小值为g(a),求证:g(a)≤0;
(Ⅲ)求证:对任意的正整数n,都有1n+1+2n+1+3n+1+…+nn+1<(n+1)n+1

查看答案和解析>>

同步练习册答案