精英家教网 > 高中数学 > 题目详情
9.设函数f(x)=ex-ax-1,
(Ⅰ)若函数f(x)在R上单调递增,求a的取值范围;
(Ⅱ)当a>0时,设函数f(x)的最小值为g(a),求证:g(a)≤0;
(Ⅲ)求证:对任意的正整数n,都有1n+1+2n+1+3n+1+…+nn+1<(n+1)n+1

分析 (Ⅰ)求出原函数的导函数,由函数f(x)在R上单调递增,可得其导函数大于等于0恒成立,由此求得实数a的取值范围;
(Ⅱ)由导数求出函数f(x)的最小值g(a)=a-alna-1,然后利用导数求出函数g(a)的最大值得答案;
(Ⅲ)直接利用放缩法,由2kn+1<(k+1)n+1(k=1,2,3,…n)证明数列不等式.

解答 (Ⅰ)解:由f(x)=ex-ax-1,得f′(x)=ex-a,
∵函数f(x)在R上单调递增,
∴f′(x)=ex-a≥0对任意x∈R恒成立,即a≤ex恒成立,
∵ex>0,
∴a≤0,
故实数a的取值范围是(-∞,0];
(Ⅱ)证明:a>0,由f′(x)=ex-a<0,得x<lna,
由f′(x)=ex-a>0,得x>lna,
∴当x=lna时,$f(x)_{min}=f(lna)={e}^{lna}-alna-1$=a-alna-1,
即g(a)=a-alna-1,
则g′(a)=-lna.
由-lna=0,得a=1,
∴g(a)≤g(1)=0,
∴g(a)≤0;
(Ⅲ)证明:由2kn+1<(k+1)n+1(k=1,2,3,…n),
得kn+1<(k+1)n+1-kn+1
∴1n+1+2n+1+3n+1+…+nn+1<2n+1-1n+1+3n+1-2n+1+…+(n+1)n+1-nn+1
=(n+1)n+1-1<(n+1)n+1

点评 本题考查利用导数求函数的单调区间,以及根据函数的增减性得到函数的最值,考查不等式恒成立时所取的条件,训练了放缩法法证明数列不等式,是压轴题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系内,已知$\overrightarrow{i}$,$\overrightarrow{j}$是两个互相垂直的单位向量,若$\overrightarrow{a}$=2$\overrightarrow{i}$-3$\overrightarrow{j}$,则向量用坐标表示$\overrightarrow{a}$=(2,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知三棱锥A-BCD的侧面展开图放在正方形网格(横、纵的单位长度均为1)中的位置如图所示,那么其体积是(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求函数f(x)=xsinx+cosx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的单调区间和最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数f(x)在R上存在导数f′(x),?x∈R,有f(-x)+f(x)=x2,在(0,+∞)上f′(x)<x,若f(4-m)-f(m)≥8-4m.则实数m的取值范围为(  )
A.[-2,2]B.[2,+∞)C.[0,+∞)D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.椭圆C1和抛物线C2的焦点均在x轴上,C1的中心和C2的顶点都在坐标原点O,点F是椭圆C1的右焦点,点M位于x轴上方且在抛物线C2的准线上,已知曲线C1:C2上各有两点,其坐标关系如下表:
x-4-1-$\frac{1}{2}$0
y-8$\frac{3}{2}$2$\sqrt{2}$$\sqrt{3}$
(Ⅰ)求C1、C2的方程;
(Ⅱ)求以线段OM为直径且被直线5x+12y-9=0截得的弦长为4的圆C的方程;
(Ⅲ)过点F斜率为k(k≠0)的直线l与C1交于P、Q两点,与圆C交于A、B两点.问:是否存在直线l,使得线段PQ与线段AB有相同的中点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若cos2α=a,求sin4α-cos4α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,PA⊥底面ABCD,M是棱PD的中点,且PA=AB=AC=2,BC=2$\sqrt{2}$. 
(1)求证:CD⊥平面CPAC;
(2)如果N是棱AB上一点,且直线CN与平面MAB所E,F成角的正弦值为$\frac{{\sqrt{10}}}{5}$,求$\frac{AN}{NB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图是某直三棱柱(侧棱与底面垂直的三棱柱)被削去上底后的直观图与三视图中的侧视图、俯视图,在直观图中,M是BD的中点,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(1)若N是BC的中点,求证:AN∥平面CME;
(2)求证:平面BDE⊥平面BCD.

查看答案和解析>>

同步练习册答案