精英家教网 > 高中数学 > 题目详情
17.求函数f(x)=xsinx+cosx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的单调区间和最值.

分析 根据求导公式和题意求出f′(x),结合定义域和余弦函数的性质求出f′(x)>0是x的范围,奇求出函数f(x)的单调递增区间.然后求出单调减区间,求解函数的最值.

解答 解:由题意得,f′(x)=sinx+xcosx-sinx=xcosx,
根据余弦函数的性质得,
当x∈[0,$\frac{π}{2}$]时,f′(x)>0,
所以f(x)的单调递增区间是[0,$\frac{π}{2}$],单调减区间为:[$-\frac{π}{2},0$]
f($-\frac{π}{2}$)=$-\frac{π}{2}$sin($-\frac{π}{2}$)+cos($-\frac{π}{2}$)=$\frac{π}{2}$,
f(0)=0×sin0+cos0=1,
f($\frac{π}{2}$)=$\frac{π}{2}$sin$\frac{π}{2}$+cos$\frac{π}{2}$=$\frac{π}{2}$,
函数的最大值为$\frac{π}{2}$,最小值为1.

点评 本题考查余弦函数的性质,以及导数与函数的单调性关系,利用函数的导数求解函数的最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和Sn=23n-n2
(1)求证:{an}是等差数列;
(2)求数列{|an|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数f(x)=2x+lg(x+1)-2的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某大型连锁超市为迎接春节购物季,销售一批年货产品,已知每销售1份获利30元,未销售的产品每份损失10元,根据以往销售情况其市场需求量的频率分布直方图如图所示,该超市欲购8000份.
(1)根据直方图估计该购物季需求量的中位数和平均数;
(2)根据直方图估计利润不少于16万的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{bn}(n∈N*)的前n项和为Sn,且{$\frac{{S}_{n}}{n}$}是等差数列,b1=1,$\frac{{S}_{2}}{2}+\frac{{S}_{3}}{3}+\frac{{S}_{4}}{4}$=6,{an}满足:?n∈N*,a1b1+a2b2+…anbn=(n-1)2n+1+2.
(1)求数列{an}与{bn}的通项公式;
(2)设Tn=$\frac{3{a}_{n}}{2{a}_{n}^{2}-3{a}_{n}+1}$,Pn=T1+T2+…+Tn,Qn=a1bn+a2bn-1+…+anb1,n∈N+,证明:Pn≤Qn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=$\frac{π}{3}$,椭圆的离心率为e1,双曲线的离心率e2,则$\frac{1}{e_1^2}+\frac{3}{e_2^2}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=ex-ax-1,
(Ⅰ)若函数f(x)在R上单调递增,求a的取值范围;
(Ⅱ)当a>0时,设函数f(x)的最小值为g(a),求证:g(a)≤0;
(Ⅲ)求证:对任意的正整数n,都有1n+1+2n+1+3n+1+…+nn+1<(n+1)n+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知数列{an}中,a1=2,前n项之和An满足An=$\frac{1}{4}$(an2+2an),且an>0,求An
(2)若数列{bn}的前n项之和为Bn,且通项bn满足log2an-log2bn=n+1+log2n,求Bn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算:${∫}_{0}^{\frac{π}{2}}$(sinx-cos2x)dx.

查看答案和解析>>

同步练习册答案