精英家教网 > 高中数学 > 题目详情
20.已知三棱锥A-BCD的侧面展开图放在正方形网格(横、纵的单位长度均为1)中的位置如图所示,那么其体积是(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.4

分析 由题意,△ACD是等腰直角三角形,其面积为$\frac{1}{2}×\sqrt{2}×\sqrt{2}$=1,BC=BA=BD=$\sqrt{5}$,B在平面ACD中的射影是CD的中点O,即可求出三棱锥A-BCD的体积.

解答 解:由题意,△ACD是等腰直角三角形,其面积为$\frac{1}{2}×\sqrt{2}×\sqrt{2}$=1,
BC=BA=BD=$\sqrt{5}$,B在平面ACD中的射影是CD的中点O,∴BO=$\sqrt{5-1}$=2,
∴VA-BCD=VB-ACD=$\frac{1}{3}×1×2$=$\frac{2}{3}$.
故选:B.

点评 本题考查三棱锥A-BCD的体积,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.如图,棱长为a的正方体ABCD-A1B1C1D1中,点E、F、G分别为CD1、A1B1、B1C1的中点,则三棱锥A-EFG的体积为$\frac{{a}^{3}}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥S-ABCD中,底面ABCD是正方形,侧棱SD⊥底面ABCD,SD=DC=2,E是SC的中点,作EF⊥SB交SB于F.
(Ⅰ)求证:SA∥平面EDB;
(Ⅱ)求证:SB⊥平面EFD;
(Ⅲ)求三棱锥E-BFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数f(x)=2x+lg(x+1)-2的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,正方体ABCD-A1B1C1D1的棱长为2.
(1)证明:AC⊥B1D;
(2)求三棱锥C-BDB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某大型连锁超市为迎接春节购物季,销售一批年货产品,已知每销售1份获利30元,未销售的产品每份损失10元,根据以往销售情况其市场需求量的频率分布直方图如图所示,该超市欲购8000份.
(1)根据直方图估计该购物季需求量的中位数和平均数;
(2)根据直方图估计利润不少于16万的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{bn}(n∈N*)的前n项和为Sn,且{$\frac{{S}_{n}}{n}$}是等差数列,b1=1,$\frac{{S}_{2}}{2}+\frac{{S}_{3}}{3}+\frac{{S}_{4}}{4}$=6,{an}满足:?n∈N*,a1b1+a2b2+…anbn=(n-1)2n+1+2.
(1)求数列{an}与{bn}的通项公式;
(2)设Tn=$\frac{3{a}_{n}}{2{a}_{n}^{2}-3{a}_{n}+1}$,Pn=T1+T2+…+Tn,Qn=a1bn+a2bn-1+…+anb1,n∈N+,证明:Pn≤Qn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=ex-ax-1,
(Ⅰ)若函数f(x)在R上单调递增,求a的取值范围;
(Ⅱ)当a>0时,设函数f(x)的最小值为g(a),求证:g(a)≤0;
(Ⅲ)求证:对任意的正整数n,都有1n+1+2n+1+3n+1+…+nn+1<(n+1)n+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,抛物线C1:y2=4x的焦准距(焦点到准线的距离)与椭圆C2:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的长半轴相等,设椭圆的右顶点为A,C1,C2在第一象限的交点为B,O为坐标原点,且△OAB的面积为$\frac{{2\sqrt{6}}}{3}$
(1)求椭圆C2的标准方程;
(2)过点A作直线l交C1于C,D两点,射线OC,OD分别交C2于E,F两点,记△OEF,△OCD的面积分别为S1,S2,问是否存在直线l,使得S1:S2=3:13?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案