已知数列{an}满足:a1=1,a2=2,2an=an-1+an+1(n≥2,n∈N*),数列{bn}满足b1=2,anbn+1=2an+1bn.
(1)求数列{an}的通项an;
(2)求证:数列
为等比数列,并求数列{bn}的通项公式.
科目:高中数学 来源: 题型:
等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.
| 第一列 | 第二列 | 第三列 | |
| 第一行 | 3 | 2 | 10 |
| 第二行 | 6 | 4 | 14 |
| 第三行 | 9 | 8 | 18 |
(1)求数列{an}的通项公式;
(2)若数列{bn}满足:bn=an+(-1)nln an,求数列{bn}的前2n项和S2n.
查看答案和解析>>
科目:高中数学 来源: 题型:
在数列{an}中,已知a1=2,a2=7,an+2等于anan+1(n∈N*)的个位数,则a2013的值是( )
(A)8 (B)6 (C)4 (D)2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com