精英家教网 > 高中数学 > 题目详情
9.已知A(1,-2),B(a,-1),C(-b,0)三点共线,其中a>0,b>0,则$\frac{1}{a}+\frac{2}{b}$的最小值是(  )
A.2B.4C.6D.8

分析 化简平面向量$\overrightarrow{AC}=({-b-1,2}),\overrightarrow{AB}=({a-1,1})$共线,从而可得2a+b=1,再由基本不等式得2ab≤$(\frac{2a+b}{4})^{2}$=$\frac{1}{4}$;从而再化简$\frac{1}{a}+\frac{2}{b}$=$\frac{2a+b}{ab}$=$\frac{1}{ab}$=$\frac{2}{2ab}$,从而求得.

解答 解:∵$\overrightarrow{AC}=({-b-1,2}),\overrightarrow{AB}=({a-1,1})$共线,
∴2a+b=1,
2ab≤$(\frac{2a+b}{4})^{2}$=$\frac{1}{4}$;
(当且仅当2a=b,即a=$\frac{1}{4}$,b=$\frac{1}{2}$时,等号成立)
∴$\frac{1}{a}+\frac{2}{b}$=$\frac{2a+b}{ab}$=$\frac{1}{ab}$=$\frac{2}{2ab}$≥8;
故选D.

点评 本题考查了平面向量与基本不等式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.阅读程序框图,若输出结果S=$\frac{9}{10}$,则整数m的值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ex-me-x,e为自然对数的底数.
(1)若f(x)在x=ln2处的切线的斜率为l,求实数m的值;
(2)当m=1时,若正数a满足:存在x0∈[1,+∞),使得f(x0)<a(-x03+3x0)成立.试比较ae-1与ea-1的大小,并说明埋由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=x2+bx+c,(b,c∈R),集合A={x丨f(x)=0},B={x|f(f(x))=0},若存在x0∈B,x0∉A则实数b的取值范围是(  )
A.0≤b≤4B.b≤0或 b≥4C.0≤b<4D.b<0或b≥4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设集合$S=\left\{{x∈N\left|{\frac{5}{x}≥1}\right.}\right\}$,T={2,4,6},则集合S∩T中元素个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线l:y=$\frac{{\sqrt{3}}}{3}$x+1过椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的一个焦点和一个顶点.
(1)求椭圆C的标准方程;
(2)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且AD⊥AB,直线BD与x轴交于点M,求常数λ使得kAM=λkBD

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若复数z满足(1-i)z=i,其中i为虚数单位,则在复平面上复数z对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项的和Sn满足Sn=n2+1,数列{bn}满足an=log2$\frac{{b}_{n}+1}{{a}_{n}+1}$.
(1)求{bn}的通项公式;
(2)记{bn}的前n项和为Tn,若Tn≤2015,求n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+(b-1)x+c(a>0),曲线y=f(x)在点P(0,f(0))处的切线方程为y=x+1
(1)求b、c的值;
(2)若过点(0,3)可作曲线g(x)=f(x)-x的三条不同切线,求实数a的取值范围.

查看答案和解析>>

同步练习册答案