精英家教网 > 高中数学 > 题目详情
11.已知F1,F2分别是双曲线3x2-y2=3a2(a>0)的左、右焦点,P是抛物线y2=8ax与双曲线的一个交点,若|PF1|+|PF2=12,则抛物线的准线方程为x=-2.

分析 确定双曲线的焦点坐标,结合题意,确定焦半径,利用双曲线的定义可解.

解答 解:由双曲线方程$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{3{a}^{2}}=1$(a>0)得c=2a
∴F1(-2a,0),F2(2a,0),
由抛物线方程y2=8ax,设F2(2a,0)为抛物线的焦点,其准线为x=-2a,过F1
则有|PF1|-|PF2|=2a,
∵|PF1|+|PF2|=12,
∴|PF1|=6+a,|PF2|=6-a,
又双曲线左准线为x=-$\frac{{a}^{2}}{c}$=$\frac{1}{2}a$,离心率e=2
∴|PF1|=2xP+a=6+a,∴xP=3
∴|PF2|=xP+2a=6-a,∴a=1
∴抛物线方程为y2=8x,
∴抛物线的准线方程为x=-2.
故答案为:x=-2.

点评 本题综合考查抛物线与双曲线的定义与性质,考查方程思想,解题的关键是灵活运用定义解题,并学会从方程到图形来沟通数与形之间的联系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.首项为2,公差为2的等差数列的前n项和为Sn,则$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$=$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若sinα-sinβ=-$\frac{1}{3}$,cosα-cosβ=$\frac{1}{2}$,则sin(α+β)的值$\frac{12}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.定义:f1(x)=f(x),当n≥2且n∈N*时,fn(x)=f(fn-1(x)),对于函数f(x)定义域内的x0,若存在正整数n是使得fn(x0)=x0成立的最小正整数,则称n是点x0的最小正周期,x0称为f(x)的n-周期点.已知定义在[0,1]上的函数f(x)的图象如图,对于函数f(x),下列说法正确的是②③⑤(写出你认为正确的所有命题的序号)
①0是函数f(x)的一个5-周期点; 
②3是点$\frac{1}{2}$的最小正周期;
③对于任意正整数n,都有${f_n}(\frac{2}{3})=\frac{2}{3}$;
④若x0是f(x)的一个2-周期点,则${x_0}∈(\frac{1}{2},1]$
⑤若x0是f(x)的一个2-周期点,则f(x0)一点是f(x)的2-周期点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}中,前m项依次构成首项为1,公差为-2的等差数列.第m+1项至第2m项依次构成首项为1,公比为$\frac{1}{2}$的等比数列,其中m≥3,m∈N*
(1)求am,a2m
(2)若对任意的n∈N*,都有an+2m=an.设数列{an}的前n项和为Sn,求S4m+3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\sqrt{3}$sin(2ωx-$\frac{π}{3}$)+$\frac{3}{2}$+t图象中,对称中心到对称轴的最小距离为$\frac{π}{4}$,且当x∈[0,$\frac{π}{3}$]时,f(x)的最大值为1.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间和对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.对函数f(x),当x∈(-∞,+∞)时,f(2-x)=f(2+x),f(7-x)=f(7+x),证明:函数y=f(x)为周期函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.两等差数列{an},{bn}的前n项和分别为Sn和Tn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n+7}{n+3}$,则$\frac{{a}_{10}}{{b}_{10}}$=$\frac{45}{22}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设集合A={x|x2-9≤0},B={x|-1<x≤4},则A∩B=(  )
A.[-3,4]B.(-1,3]C.[-3,-1)D.[-1,3]

查看答案和解析>>

同步练习册答案