精英家教网 > 高中数学 > 题目详情
19.定义:f1(x)=f(x),当n≥2且n∈N*时,fn(x)=f(fn-1(x)),对于函数f(x)定义域内的x0,若存在正整数n是使得fn(x0)=x0成立的最小正整数,则称n是点x0的最小正周期,x0称为f(x)的n-周期点.已知定义在[0,1]上的函数f(x)的图象如图,对于函数f(x),下列说法正确的是②③⑤(写出你认为正确的所有命题的序号)
①0是函数f(x)的一个5-周期点; 
②3是点$\frac{1}{2}$的最小正周期;
③对于任意正整数n,都有${f_n}(\frac{2}{3})=\frac{2}{3}$;
④若x0是f(x)的一个2-周期点,则${x_0}∈(\frac{1}{2},1]$
⑤若x0是f(x)的一个2-周期点,则f(x0)一点是f(x)的2-周期点.

分析 由图象可得函数的解析式为f(x)=$\left\{\begin{array}{l}{x+\frac{1}{2},(0≤x≤\frac{1}{2})}\\{-2x+2,(\frac{1}{2}≤x≤1)}\end{array}\right.$,再根据所给的定义解题

解答 解:由图象可得函数的解析式为f(x)=$\left\{\begin{array}{l}{x+\frac{1}{2},(0≤x≤\frac{1}{2})}\\{-2x+2,(\frac{1}{2}≤x≤1)}\end{array}\right.$,
①f1(0)=f(0)=$\frac{1}{2}$,则f2(0)=f(f1(0))=f(f(0))=f($\frac{1}{2}$)=1,f3(0)=f(f2(0))=f(1)=0,
f4(0)=f(f3(0))=f(0)=$\frac{1}{2}$,f5(0)=f(f4(0))=f($\frac{1}{2}$)=1≠0,故0不是函数f(x)的一个5-周期点,①错误;
②f1($\frac{1}{2}$)=f($\frac{1}{2}$)=1,则f2($\frac{1}{2}$)=f(f1($\frac{1}{2}$))=f(1)=0,f3($\frac{1}{2}$)=f(f2($\frac{1}{2}$))=f(0)=$\frac{1}{2}$,∴3是点$\frac{1}{2}$的最小正周期,故②正确;
③∵f($\frac{2}{3}$)=-2×$\frac{2}{3}$+2=$\frac{2}{3}$,∴${f_n}(\frac{2}{3})=\frac{2}{3}$;故③正确;
④若x0是f(x)的一个2-周期点,则f2(x0)=f(f1(x0)),若$\frac{1}{2}$<x0≤1,则f1(x0)=-2x0+2∈(1,2],
则f(f1(x0))无意义,故④错误;
⑤若x0是f(x)的一个2-周期点,则f2(x0)=x0,∴f2(x0)=f(f1(x0))=f(f(x0))=x0
∴f2(f(x0))=f(f1(f(x0)))=f(f(f(x0)))=f(x0),
∴f(x0)是f(x)的2-周期点.故⑤正确;
综上②③⑤正确,
故答案为:②③⑤

点评 本题主要考查新定义的题目,解答的关键是读懂所给的定义,用定义解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.若a,b∈R+,且a+b=1,求证:$\sqrt{a+\frac{1}{2}}$+$\sqrt{b+\frac{1}{2}}$≤2.要求用两种方法证明:(1)分析法;(2)综合法.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知点A(3,2),F是抛物线y2=2x的焦点,若点P在抛物线上运动,当|PA|+|PF|取最小值时,点P的坐标为(2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦点分别是F1(-1,0),F2(1,0),直线l的方程是x=4,点P是椭圆C上动点(不在x轴上),过点F2作直线PF2的垂线交直线l于点Q,当PF1垂直x轴时,点Q的坐标是(4,4).
(Ⅰ)求椭圆C的方程;
(Ⅱ)判断点P运动时,直线PQ与椭圆C的公共点个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.翡翠市场流行一种赌石“游戏规则”:翡翠在开采出来时有一层风化皮包裹着,无法知道其内的好坏,须切割后方能知道翡翠的价值,参加者先缴纳一定金额后可得到一块翡翠石并现场开石验证其具有的收藏价值.某举办商在赌石游戏中设置了甲、乙两种赌石规则,规则甲的赌中率为$\frac{2}{3}$,赌中后可获得20万元;规则乙的赌中率为P0(0<P0<1),赌中后可得30万元;未赌中则没有收获.每人有且只有一次赌石机会,每次赌中与否互不影响,赌石结束后当场得到兑现金额.
(1)收藏者张先生选择规则甲赌石,收藏者李先生选择规则乙赌石,记他们的累计获得金额数为X(单位:万元),若X≤30的概率为$\frac{7}{9}$,求P0的大小;
(2)若收藏者张先生、李先生都选择赌石规则甲或选择赌石规则乙进行赌石,问:他们选择何种规则赌石,累计得到金额的数学期望最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率是$\sqrt{3}$,则该双曲线的渐近线方程为(  )
A.y=±$\sqrt{3}$xB.y=±$\sqrt{2}$xC.y=±$\frac{\sqrt{2}}{2}$xD.y=±$\frac{\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知F1,F2分别是双曲线3x2-y2=3a2(a>0)的左、右焦点,P是抛物线y2=8ax与双曲线的一个交点,若|PF1|+|PF2=12,则抛物线的准线方程为x=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某研究性学习小组通过计算发现下列四个式子的结果均为同一常数:
sin25°+sin265°+sin2125°;
sin210°+sin270°+sin2130°;
sin230°+sin290°+sin2150°;
sin245°+sin2105°+sin2165°.
请你根据上述某一表达式的结果,写出一般性命题并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知全集U=R,若集合M={x|-3<x<3},N={x|2x+1-1≥0},则(∁UM)∩N=(  )
A.[3,+∞)B.(-1,3)C.[-1,3)D.(3,+∞)

查看答案和解析>>

同步练习册答案