精英家教网 > 高中数学 > 题目详情
20.两等差数列{an},{bn}的前n项和分别为Sn和Tn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n+7}{n+3}$,则$\frac{{a}_{10}}{{b}_{10}}$=$\frac{45}{22}$.

分析 由等差数列的求和公式和性质可得$\frac{{a}_{10}}{{b}_{10}}$=$\frac{{S}_{19}}{{T}_{19}}$,代值计算可得.

解答 解:由等差数列的求和公式和性质可得:
$\frac{{a}_{10}}{{b}_{10}}$=$\frac{2{a}_{10}}{2{b}_{10}}$=$\frac{{a}_{1}+{a}_{19}}{{b}_{1}+{b}_{19}}$=$\frac{\frac{19({a}_{1}+{a}_{19})}{2}}{\frac{19({b}_{1}+{b}_{19})}{2}}$
=$\frac{{S}_{19}}{{T}_{19}}$=$\frac{2×19+7}{19+3}$=$\frac{45}{22}$,
故答案为:$\frac{45}{22}$.

点评 本题考查等差数列的求和公式和性质,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知点A(3,2),F是抛物线y2=2x的焦点,若点P在抛物线上运动,当|PA|+|PF|取最小值时,点P的坐标为(2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知F1,F2分别是双曲线3x2-y2=3a2(a>0)的左、右焦点,P是抛物线y2=8ax与双曲线的一个交点,若|PF1|+|PF2=12,则抛物线的准线方程为x=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某研究性学习小组通过计算发现下列四个式子的结果均为同一常数:
sin25°+sin265°+sin2125°;
sin210°+sin270°+sin2130°;
sin230°+sin290°+sin2150°;
sin245°+sin2105°+sin2165°.
请你根据上述某一表达式的结果,写出一般性命题并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知${∫}_{-1}^{1}$(x3+ax+3a-b)dx=2a+6,且f(t)=${∫}_{0}^{t}$(x3+ax+3a-b)dx为偶函数,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an},{bn}满足,a1=$\frac{1}{4}$,an+bn=1,bn+1=$\frac{{b}_{n}}{(1{-a}_{n})(1{+a}_{n})}$,求bn的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设x,y,z是不相等的三个数,则使x,y,z成等差数列,且x,z,y成等比数列的条件是(  )
A.x:y:z=4:1:2B.x:y:z=4:1:(-2)C.x:y:z=(-4):1:2D.x:y:z=4:(-1):2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知全集U=R,若集合M={x|-3<x<3},N={x|2x+1-1≥0},则(∁UM)∩N=(  )
A.[3,+∞)B.(-1,3)C.[-1,3)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=ex-ax,x∈R.
(Ⅰ)当a=2时,求曲线f(x)在点(0,f(0))处的切线方程;
(Ⅱ)在(Ⅰ)的条件下,求证:f(x)>0;
(Ⅲ)当a>1时,求函数f(x)在[0,a]上的最大值.

查看答案和解析>>

同步练习册答案