精英家教网 > 高中数学 > 题目详情
设集合A={x|x2+4x=0,x∈R}、B={x|x2+2(a+1)x+a2-1=0},若B是A的子集,求实数a的范围.
考点:集合的包含关系判断及应用
专题:集合
分析:求出集合A、B的元素,利用B是A的子集,即可求出实数a的范围.
解答: 解:∵A={x|x2+4x=0,x∈R}、
∴A={0,-4}
∵B={x|x2+2(a+1)x+a2-1=0},且B⊆A
故①B=Φ时,△=4(a+1)2-4(a2-1)<0,即a<-1,满足B⊆A
②B≠Φ时,当a=-1,此时B={0},满足B⊆A
当a>-1时,x=0,-4是方程x2+2(a+1)x+a2-1=0的两个根
故a=1
综上所述a=1或a≤-1
点评:本题主要考查集合的基本运算,属于基础题.要正确判断两个集合间的关系,必须对集合的相关概念有深刻的理解,善于抓住代表元素,认清集合的特征.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横纵坐标分别对应数列{an}(n∈N*)的前12项,如下表所示:
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6
按如此规律下去,则a2013=(  )
A、501B、502
C、503D、504

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,且asinB+bcosA=0.
(Ⅰ)求角A的大小;
(Ⅱ)若a=
2
,b=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,角A、B、C所对的边分别是 a,b,c,且满足
3
a-2bsinA=0

(Ⅰ)求角B的大小;           
(Ⅱ)若b=
7
,a=3
,求c的值;
(Ⅲ)若b=
7
,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断函数f(x)=
x(1-x)(x<0)
x(1+x)(x>0)
的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|1<ax+2≤6},集合B={x|-
1
3
<x≤3},
(1)若A⊆B,求实数a的取值范围;
(2)若B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直径为BC的半圆中,A是弧BC上一点,正方形PQRS内接于△ABC,若BC=a,∠ABC=θ,设△ABC的面积为Sl,正方形PQRS的面积为S2
(1)用a,θ表示S1和S2
(2)当a固定,θ变化时,求
S1
S2
取得最小值时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={1,6,9},B={1,2},则A∩B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

当x=
 
时,函数y=sin(2x-
π
6
)+3有最小值为
 

查看答案和解析>>

同步练习册答案