精英家教网 > 高中数学 > 题目详情
设集合A={x|2x>1},B={y|y=-x2+2x-2,x∈R}
(1)求集合A,B,(∁RB)∪A;
(2)若集合C={x|2x+a<0},且满足B∪C=C,求实数a的取值范围.
考点:交、并、补集的混合运算
专题:集合
分析:(1)求出A中不等式的解集确定出A,配方后求出B中函数的值域确定出B,根据全集R求出B的补集,找出A与B补集的并集即可;
(2)求出C中不等式的解集表示出C,根据B与C并集为C得到B为C的子集,即可确定出a的范围.
解答: 解:(1)由2x>1得,x>0,则A={x|x>1},
由y=-x2+2x-2=-(x-1)2-1得,y≤-1,
则B={y|y≤-1},∴∁RB={y|y>-1},
∴(∁RB)∪A={x|x>-1},
(2)由2x+a<0得,x<-
a
2
,则C={x|x<-
a
2
},
∵B∪C=C,则B⊆C,
-
a
2
≥-1
,解得a≤2,
故实数a的取值范围是:(-∞,2].
点评:本题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以M(-4,3)为圆心的圆与直线2x+y-5=0相离,那么圆M的半径r的取值范围是(  )
A、0<r<2
B、0<r<
5
C、0<r<2
5
D、0<r<10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x(x-a)2,a是大于零的常数.
(1)当a=1时,求f(x)的极值;
(2)若函数f(x)在区间[1,2]上为单调递增函数,求实数a的取值范围;
(3)证明:曲线y=f(x)上存在一点P,使得曲线y=f(x)上总有两点M、N且
MP
=
PN
成立,并写出点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x∈Z|-6≤x≤6},B={1,2,3},C={3,4,5,6},求:
(1)A∩(B∩C);  
(2)A∩∁A(B∪C)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x2-2x+2-k)ex,k∈R.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若f(x)在区间[0,1]上的最小值为e,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1n(-x)+ax-
1
x
(a为常用数),在x=-1时取得极值.
(Ⅰ)求实数a的值;
(Ⅱ)设g(x)=f(-x)+2x,若方程g(x)-b=0有两个不相等的实数根,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1中,E为DD1的中点.
(Ⅰ)求证:BD1∥平面AEC;
(Ⅱ)求证:BD1⊥平面ACB1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2x+4
(1)作出函数f(x)的图象;
(2)指出函数f(x)的单调递增区间,并用单调性的定义证明;
(3)求函数y=f(x),x∈[t,t+1]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx-
π
4
)+1(A>0,ω>0)的最大值为
2
+1,其图象相邻两条对称轴之间的距离为
π
2

(1)求函数f(x)的解析式;
(2)求使f(x)≥0成立的x的取值集合;
(3)若x∈(0,
π
2
),求函数y=f(x)的值域.

查看答案和解析>>

同步练习册答案