精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{5}(1-x),(x<1)}\\{-(x-2)^{2}+2,(x≥1)}\end{array}\right.$,则关于方程f(|x|)=a,(a∈R)实根个数不可能为(  )
A.2B.3C.4D.5

分析 由题意可得求函数y=f(|x|)的图象和直线y=a的交点个数.作出函数y=f(|x|)的图象,平移直线y=a,即可得到所求交点个数,进而得到结论.

解答 解:方程f(|x|)=a,(a∈R)实根个数
即为函数y=f(|x|)和直线y=a的交点个数.
由y=f(|x|)为偶函数,可得图象关于y轴对称.
作出函数y=f(|x|)的图象,如图,
平移直线y=a,可得它们有2个、3个、4个交点.
不可能有5个交点,即不可能有5个实根.
故选:D.

点评 本题考查方程的实根个数问题的解法,注意运用转化思想和数形结合的方法,考查判断和作图能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.在兴趣小组的4名男生和3名女生中选取3人参加某竞赛,要求男生女生都至少有1人,则不同的选取方法有(  )种.
A.20B.30C.35D.60

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,三个内角A,B,C的对边分别是a.b.c,已知B=30°,c=150,b=50$\sqrt{3}$,那么这个三角形是(  )
A.等边三角形B.等腰三角形
C.直角三角形D.等腰三角或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设f(x)为二次函数,且f(1)=1,f(x+1)-f(x)=-4x+1,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知空间四边形ABCD,E、H分别是AB、AD的点,F、G分别是边BC、DC的点(如图),且EFGH是矩形,求证:
(1)AC∥面EFGH.
(2)求异面直线AC与BD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知二次函数y=ax2+bx+c的图象过点P(1,2)和点Q(-2,-1).
(1)用a表示b和c;
(2)如果对任意不为零的一切实数a,这个二次函数的图象都不经过点M(m,m2+1).求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知点M(x,y)到点F(2,0)的距离与定直线x=$\frac{5}{2}$的距离之比为$\frac{2\sqrt{5}}{5}$,设点M的轨迹为曲线E
(Ⅰ)求曲线E的方程;
(Ⅱ)设F关于原点的对称点为F′,是否存在经过点F的直线l交曲线E与A、B两点,使得△F′AB的面积为$\sqrt{5}$?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\left\{{\begin{array}{l}{\frac{3}{x-1}}&{(x≥2)}\\{|{2^x}-1|}&{(x<2)}\end{array}}$,若函数g(x)=f(x)-k有三个零点,则实数k的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,已知曲线C1的参数方程为$\left\{\begin{array}{l}x=2cosφ\\ y=2+2sinφ\end{array}$(φ为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4$\sqrt{3}$cosθ.
(Ⅰ)求C1与C2交点的直角坐标;
(Ⅱ)已知曲线C3的参数方程为$\left\{{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}}\right.$(0≤α<π,t为参数,且t≠0),C3与C1相交于点P,C2与C3相交于点Q,且|PQ|=8,求α的值.

查看答案和解析>>

同步练习册答案