分析 (Ⅰ)利用空间直角坐标系的性质能求出点A,B,C,D,P,E的坐标.
(Ⅱ)先求出向量$\overrightarrow{CE}$,再求|$\overrightarrow{CE}$|的长.
解答 (本小题满分13分)![]()
解:(Ⅰ)∵正方形ABCD的边长为2,PA⊥平面ABCD,且PA=2,E是PD中点.
以A为原点,建立如图所示的空间直角坐标系A-xyz.
∴A(0,0,0),B(2,0,0),C(2,2,0),
D(0,2,0),P(0,0,2),E(0,1,1).
(Ⅱ)∵$\overrightarrow{CE}$=(-2,-1,1),
∴|$\overrightarrow{CE}$|=$\sqrt{4+1+1}$=$\sqrt{6}$.
点评 本题考查点的坐标的求法,考查线段长的求法,是基础题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $80\sqrt{5}$ | B. | $60\sqrt{5}$ | C. | $40\sqrt{5}$ | D. | $20\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | -$\frac{3}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a2>b2 | B. | |a|>|b| | C. | lg(a-b)>0 | D. | ($\frac{1}{2}$)a>($\frac{1}{2}$)b |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com