精英家教网 > 高中数学 > 题目详情
4.已知sinα+cosα=$\frac{1}{3}$,α∈(0,π),求tanα的值.

分析 将已知等式平方并结合sin2α+cos2α=1,得到2sinαcosα,由此算出(sinα-cosα)2,得sinα-cosα,从而解出sinα,cosα,再利用同角三角函数的商数关系,即可算出tanα的值.

解答 解:∵sinα+cosα=$\frac{1}{3}$,…①
∴平方得(sinα+cosα)2=$\frac{1}{9}$,即1+2sinαcosα=$\frac{1}{9}$
可得2sinαcosα=-$\frac{8}{9}$,
因此,(sinα-cosα)2=(sinα+cosα)2-4sinαcosα=$\frac{1}{9}+\frac{16}{9}$=$\frac{17}{9}$,
得sinα-cosα=$\frac{\sqrt{17}}{3}$(舍负),…②
①②联解,得sinα=$\frac{1+\sqrt{17}}{6}$,cosα=$\frac{1-\sqrt{17}}{6}$.
∴tanα=$\frac{sinα}{cosα}$=$\frac{1+\sqrt{17}}{1-\sqrt{17}}$=-$\frac{9+\sqrt{17}}{8}$.

点评 本题给出角α的正弦与余弦之和,求α的正切之值.着重考查了同角三角函数关系的知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知双曲线C:mx2-ny2=1的一个焦点为F(-5,0).,实轴长为6,则双曲线C的渐近线方程为(  )
A.y=±$\frac{4}{3}$xB.y=±$\frac{3}{4}$xC.y=±$\frac{5}{3}$xD.y=±$\frac{3}{5}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,设A是单位圆和x轴正半轴的交点,P、Q是单位圆上的两点,O是坐标原点,∠AOP=$\frac{π}{6}$,∠AOQ=α,α∈[0,π).
(1)若Q($\frac{3}{5}$,$\frac{4}{5}$),求cos(α+$\frac{π}{4}$)的值;
(2)设函数f(α)=$\overrightarrow{OP}$•$\overrightarrow{OQ}$,求f(α)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,设定点A(a,a),P是曲线C:y=$\frac{1}{x}$(x>0)上一动点
(1)求证:曲线C在点P处的切线与坐标轴围成的三角形面积为定值;
(2)当点P,A之间的最短距离为2$\sqrt{2}$时,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知随机变量X~N(μ,σ2),且期概率密度函数在(-∞,80)上是增函数,在(80,+∞)上为减函数,且P(72<X<88)=0.683,求:
(1)参数μ,σ的值;
(2)P(64<X≤72)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x3-mx,直线l1∥l2,l1与函数f(x)图象切于点A、交于点B,l2与函数f(x)图象切于点C、交于点D.
(1)求证:四边形ABCD为平行四边形;
(2)若四边形ABCD为矩形,求m的取值范围;
(3)若四边形ABCD为正方形,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.要得到函数y=2sin(2x+$\frac{π}{4}$)的图象,只需将函数y=2sin(x+$\frac{π}{4}$)的图象(  )
A.在纵坐标不变时,横坐标伸长到原来的2倍
B.在纵坐标不变时,横坐标缩短到原来的$\frac{1}{2}$倍
C.在横坐标不变时,纵坐标伸长到原来的2倍
D.在横坐标不变时,纵坐标缩短到原来的$\frac{1}{2}$倍

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设U=R,集合A={x|x2-2x-15<0},B={x|x2-a2<0}.
(1)若A?B,且a>0,求实数a的取值范围;
(2)若a是任意实数,且A∩∁UB=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知x0=$\frac{π}{3}$是函数f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$)的一个极大值点,则f(x)的一个单调递减区间是(  )
A.($\frac{π}{3}$,$\frac{5π}{6}$)B.($\frac{π}{6}$,$\frac{5π}{6}$)C.($\frac{π}{2}$,π)D.($\frac{2π}{3}$,π)

查看答案和解析>>

同步练习册答案