精英家教网 > 高中数学 > 题目详情
13.设U=R,集合A={x|x2-2x-15<0},B={x|x2-a2<0}.
(1)若A?B,且a>0,求实数a的取值范围;
(2)若a是任意实数,且A∩∁UB=∅,求实数a的取值范围.

分析 (1)集合A=(-3,5),a>0时,B=(-a,a).由A?B,可得$\left\{\begin{array}{l}{-a≥-3}\\{a≤5}\end{array}\right.$,a>0,且等号不能同时成立,解出即可得出.
(2)由A∩∁UB=∅,可得∁UB=∅,或∁UB⊆∁UA,即A⊆B.解出即可得出.

解答 解:(1)集合A={x|x2-2x-15<0}=(-3,5),a>0时,B={x|x2-a2<0}=(-a,a).
∵A?B,∴$\left\{\begin{array}{l}{-a≥-3}\\{a≤5}\end{array}\right.$,a>0,且等号不能同时成立,解得0<a≤3,a=3时成立.
∴实数a的取值范围是(0,3].
(2)∵A∩∁UB=∅,∴∁UB=∅,或∁UB⊆∁UA,即A⊆B.
a=0时,B=∅,满足题意.
a≠0时,B=(-|a|,|a|),A⊆B.
∴$\left\{\begin{array}{l}{-|a|≤-3}\\{|a|≥5}\end{array}\right.$,解得a≥5,或a≤-5.
∴实数a的取值范围是(-∞,-5]∪[5,+∞).

点评 本题考查了集合的运算性质、不等式的解法,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知α是第三限角,cosα=-$\frac{12}{13}$,则sinα等于(  )
A.-$\frac{5}{13}$B.$\frac{5}{13}$C.$\frac{5}{12}$D.-$\frac{5}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知sinα+cosα=$\frac{1}{3}$,α∈(0,π),求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=πtanx+1图象的对称中心坐标是(  )
A.(kπ,1)(k∈Z)B.($\frac{π}{2}$+kπ,1)(k∈Z)C.($\frac{1}{2}$kπ,0)(k∈Z)D.($\frac{1}{2}$kπ,1)(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知复数z=$\frac{2i}{1-i}$(i为虚数单位),z的共轭复数为$\overline{z}$,则z+$\overline{z}$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某程序框图如图所示,现将输出(x,y)值依次记为:(x1,y1),(x2,y2),…,(xn,yn),…若程序运行中输出的一个数组是(x,-10),则数组中的x=(  )
A.32B.24C.18D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=${log}_{3}^{2}x+3l{og}_{3}x+2$,且$\frac{1}{9}$≤x≤9.
(1)求f(3)的值;
(2)求函数f(x)的最大值与最小值及与之对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知三角形△ABC中,角A,B,C的对边分别为a,b,c,若a=5,b=8,C=60°,则$\overrightarrow{CA}$•$\overrightarrow{CB}$=(  )
A.-20$\sqrt{3}$B.-20C.20D.20$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=tan(2x+$\frac{π}{3}$)的最小正周期为(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

同步练习册答案