精英家教网 > 高中数学 > 题目详情
M为抛物线y2=4x上一动点,F是焦点,P(3,1)是定点,求|MP|+|MF|的最小值为
 
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:设点M在准线上的射影为D,则根据抛物线的定义可知|MF|=|MD|进而把问题转化为求|MP|+|MD|取得最小,进而可推断出当D,M,P三点共线时|MP|+|MD|最小,答案可得.
解答: 解:设点M在准线上的射影为D,则根据抛物线的定义可知|MF|=|MD|
∴要求|MP|+|MF|取得最小值,即求|MP|+|MD|取得最小,
当D,M,P三点共线时|MP|+|MD|最小,为3-(-1)=4.
故答案为:4.
点评:本题考查抛物线的定义、标准方程,以及简单性质的应用,判断当D,M,P三点共线时|PM|+|MD|最小,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的三个顶点A(-3,0),B(2,1),C(-2,3).求:
(1)BC边上的中线AD所在的直线方程;
(2)BC边的垂直平分线DE所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是函数f′(x)的导数,若方程f″(x)=0有实数解x0,则称(x0,f(x0))为函数y=f(x)的“拐点”.可以证明,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一结论判断下列命题:
①任意三次函数都关于点(-
b
3a
,f(-
b
3a
))
对称:
②存在三次函数f′(x)=0有实数解x0,点(x0,f(x0))为函数y=f(x)的对称中心;
③存在三次函数有两个及两个以上的对称中心;
④若函数g(x)=
1
3
x3-
1
2
x2-
5
12
,则g(
1
2013
)+g(
2
2013
)+g(
3
2013
)+…+g(
2012
2013
)=-1006

其中正确命题的序号为
 
(把所有正确命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+
1
x
-a(x≠0),a为常数,且a>2,则f(x)的零点个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=sin
1
2
ωx在(0,π)内是减函数,则ω的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
4x
4x+2
,则f(
1
2014
)+(
2
2014
)+f(
3
2014
)+…+f(
2013
2014
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一个总体分为A、B两层,用分层抽样的方法从总体中抽取一个容量为20的样本,已知B层中的每个个体被抽到的概率都为
1
12
,则总体中的个体数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

根据程序框图,当输出结果是14.1时,则输入的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在实数集R上的函数f(x)满足f(1)=3,且f(x)的导函数f′(x)<2,则不等式f(lnx)<2lnx+1的解集为(  )
A、(1,+∞)
B、(e,+∞)
C、(0,1)
D、(0,e)

查看答案和解析>>

同步练习册答案