| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 (1)根据含有量词命题的否定定义判定;
(2)根据向量的夹角与数量积的关系判定;
(3)由y=tanx的对称中心为($\frac{kπ}{2}$,0),k∈Z判定
解答 解:对于(1),“$?{x_0}∈R,{x_0}^2-2sin{x_0}≥5$”的否定是“?x∈R,x2-2sinx<5”,正确;
对于(2),“∠AOB为钝角”的充要条件是“$\overrightarrow{OA}•\overrightarrow{OB}<0$”且$\overrightarrow{OA},\overrightarrow{OB}$不共线,故错;
对于(3),∵y=tanx的对称中心为($\frac{kπ}{2}$,0),k∈Z,∴由2x+$\frac{π}{3}$=$\frac{kπ}{2}$,k∈Z,得x=-$\frac{π}{6}+\frac{kπ}{4}$,故错
故选:B
点评 本题考查了命题的否定、充要条件、正切函数的对称性,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a,b∈R且a+b=1,则a•b≤$\frac{1}{4}$ | |
| B. | 若a,b∈R,则$\frac{{a}^{2}+{b}^{2}}{2}$≥($\frac{a+b}{2}$)2≥ab恒成立 | |
| C. | $\frac{{x}^{2}+3}{\sqrt{{x}^{2}+1}}$ (x∈R) 的最小值是2$\sqrt{2}$ | |
| D. | x0,y0∈R,x02+y02+x0y0<0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,-1) | B. | (1,-4) | C. | $({\frac{1}{9},-4})$ | D. | (9,-1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com