精英家教网 > 高中数学 > 题目详情
设函数f(x)=
bx
lnx
-ax,e为自然对数的底数
(Ⅰ)若函数f(x)的图象在点 (e2,f(e2))处的切线方程为 3x+4y-e2=0,求实数a,b的值;
(Ⅱ)当b=1时,若存在 x1,x2∈[e,e2],使 f(x1)≤f′(x2)+a成立,求实数a的最小值.
考点:导数在最大值、最小值问题中的应用
专题:导数的综合应用
分析:(I)f(x)=
b(lnx-1)
(lnx)2
-a(x>0,且x≠1),由题意可得f′(e2)=
b
4
-a=-
3
4
,f(e2)=
be2
2
-ae2
=-
1
2
e2
,联立解得即可.
(II)当b=1时,f(x)=
x
lnx
-ax
,f′(x)=
lnx-1
(lnx)2
-a
,由x∈[e,e2],可得
1
lnx
∈[
1
2
,1]
.由f′(x)+a=
lnx-1
(lnx)2
=-(
1
lnx
-
1
2
)2
+
1
4
1
4
,可得[f′(x)+a]max=
1
4
,x∈[e,e2].存在 x1,x2∈[e,e2],使 f(x1)≤f′(x2)+a成立?x∈[e,e2],f(x)min≤f(x)max+a=
1
4
,对a分类讨论解出即可.
解答: 解:(I)f(x)=
b(lnx-1)
(lnx)2
-a(x>0,且x≠1),
∵函数f(x)的图象在点 (e2,f(e2))处的切线方程为 3x+4y-e2=0,
∴f′(e2)=
b
4
-a=-
3
4
,f(e2)=
be2
2
-ae2
=-
1
2
e2

联立解得a=b=1.
(II)当b=1时,f(x)=
x
lnx
-ax
,f′(x)=
lnx-1
(lnx)2
-a

∵x∈[e,e2],∴lnx∈[1,2],
1
lnx
∈[
1
2
,1]

∴f′(x)+a=
lnx-1
(lnx)2
=-(
1
lnx
-
1
2
)2
+
1
4
1
4

∴[f′(x)+a]max=
1
4
,x∈[e,e2].
存在 x1,x2∈[e,e2],使 f(x1)≤f′(x2)+a成立?x∈[e,e2],f(x)min≤f(x)max+a=
1
4

①当a
1
4
时,f′(x)≤0,f(x)在x∈[e,e2]上为减函数,则f(x)min=f(e2)=
e2
2
-ae2
1
4
,解得a≥
1
2
-
1
4e2

②当a
1
4
时,由f′(x)=-(
1
lnx
-
1
2
)2+
1
4
-a在[e,e2]上的值域为[-a,
1
4
-a]

(i)当-a≥0即a≤0时,f′(x)≥0在x∈[e,e2]上恒成立,因此f(x)在x∈[e,e2]上为增函数,
∴f(x)min=f(e)=e-ae≥e>
1
e
,不合题意,舍去.
(ii)当-a<0时,即0<a<
1
4
时,由f′(x)的单调性和值域可知:存在唯一x0∈(e,e2),使得f′(x0)=0,
且满足当x∈[e,x0),f′(x)<0,f(x)为减函数;当x∈(x0e2)时,f′(x)>0,f(x)为增函数.
∴f(x)min=f(x0)=
x0
lnx0
-ax0
1
4
,x0∈(e,e2).
∴a≥
1
lnx0
-
1
4x0
1
lne2
-
1
4e2
1
4
,与0<a<
1
4
矛盾.
综上可得:a的最小值为
1
2
-
1
4e2
点评:本题考查了利用导数研究函数的单调性极值与最值、切线,考查了恒成立问题的等价转化方法,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

抛物线y2=4x上的点P(4,m)到其焦点的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
-log2x(0<x≤1)
x-1
(x>1)
,若区间(0,4]内随机选取一个实数x0,则所选取的实数x0满足f(x0)≤1的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=6x2的单调增区间是
 
,图象关于
 
对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=8x与f(x)=0.3x(x∈R)的图象都经过点
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C对应边分别a,b,c,且a=5,b=6,c=4,角A的平分线交BC于D,则线段AD长度为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,且c=
6
+
2
,C=30°,求a+b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正三棱柱ABC-A1B1C1的各棱长都为a,P为A1B上的点.
(1)试确定
A1P
PB
的值,使得PC⊥AB;
(2在直线A1B上找一点P使二面角P-AC-B的大小为60°,求
A1P
PB
的值;
(3)在(2)条件下,求C1到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点,左、右顶点A1、A2在x轴上,离心率为e1=
21
3
的双曲线C1经过点P(6,6).
(1)求双曲线C1的标准方程;
(2)若椭圆C2以A1、A2为左、右焦点,离心率为e2,且e1、e2为方程x2+mx+
21
5
=0的两实根,求椭圆C2的标准方程.

查看答案和解析>>

同步练习册答案