精英家教网 > 高中数学 > 题目详情
已知函数f(x)在(0,+∞)内为单调递增函数,且f(x•y)=f(x)+f(y)对任意的x,y都成立,f(2)=1.
(Ⅰ)求f(1),f(4)的值;
(Ⅱ)求满足条件f(x)+f(x-3)>2的x的取值范围.
考点:抽象函数及其应用
专题:计算题,函数的性质及应用
分析:(Ⅰ)令x=y=1,可求得f(1)的值;再令x=y=2,即可求得f(4)的值;
(Ⅱ)由(Ⅰ)知,f(4)=2,于是f(x)+f(x-3)>2?f[x(x-3)]>f(4),利用f(x)在(0,+∞)为单调递增函数,可得到相应的不等式组,解之即可.
解答: 解:(Ⅰ)令x=y=1,则f(1)=f(1)+f(1),f(1)=0,
令x=y=2则f(4)=f(2×2)=f(2)+f(2)=2;
(Ⅱ)∵f(x)+f(x-3)>2=f(4),
∴f[x(x-3)]>f(4),
又∵f(x)在(0,+∞)为单调递增函数,
x>0
x-3>0
x(x-3)>4
,解得:x>4.
∴原不等式的解集为:{x|x>4}.
点评:本题考查抽象函数及其性质,着重考查赋值法与函数单调性的应用,突出转化思想与解不等式组的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正比例函数y=-4x与反比例函数y=
k
x
的图象交于A、B两点,若点A的坐标为(x,4),则点B的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若sinα-2cosα=0,则2sin2α-3sinαcosα-5cos2α+2的值为(  )
A、
5
3
B、-
1
3
C、
7
5
D、-
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

某足球俱乐部2013年10月份安排4次体能测试,规定:按顺序测试,一旦测试合格就不必参加以后的测试,否则4次测试都要参加.若运动员小李4次测试每次合格的概率组成一个公差为
1
8
的等差数列,他第一次测试合格的概率不超过
1
2
,且他直到第二次测试才合格的概率为
9
32

(1)求小李第一次参加测试就合格的概率P1
(2)求小李10月份参加测试的次数ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cos2x+2
3
sinxcosx-1,
(1)求f(x)的最小正周期及对称轴方程;
(2)在△ABC中,角A,B,C所对的边分别是a,b,c,若f(
c
2
)=2且c2=ab,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知递增的等比数列{bn}(n∈N*)满足b3+b5=40,b3•b5=256,则数列{bn}的前10项和S10=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间直角坐标系o-xyz中.点(1,2,3)关于y轴对称的点坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}共有12项,其中a1=0,a5=2,a12=5,且|ak+1-ak|=1,k=1,2,3…,11,则满足这种条件的不同数列的个数为(  )
A、84B、168
C、76D、152

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校有高一学生720人,现从高一、高二、高三这三个年级学生中采用分层抽样的方法,抽取180人进行英语水平测试.已知抽取的高一学生数是抽取的高二学生数、高三学生数的等差中项,且高二年级抽取40人,则该校高三学生人数是
 

查看答案和解析>>

同步练习册答案