精英家教网 > 高中数学 > 题目详情
若sin2θ=
1
3
,则tanθ+cotθ=
 
考点:二倍角的正弦,同角三角函数基本关系的运用
专题:三角函数的求值
分析:化简得出
sinθ
cosθ
+
cosθ
sinθ
=
1
sinθcosθ
=
2
sin2θ
,把sin2θ=
1
3
代入即可得出式子的值.
解答: 解:
sinθ
cosθ
+
cosθ
sinθ
=
1
sinθcosθ
=
2
sin2θ

∵sin2θ=
1
3

2
1
3
=6,
故答案为:6
点评:本题考查了三角函数的化简求值,二倍角公式的运用,属于容易题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a,b,c为互不相等的实数,求证:a4+b4+c4>abc(a+b+c)

查看答案和解析>>

科目:高中数学 来源: 题型:

要建造一个容积为1200m3,深为6m的长方体无盖蓄水池,池壁的造价为95元/m2,池底的造价为135元/m2,怎样设计水池的长与宽,才能使水池的总造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PA⊥平面AC,四边形ABCD是矩形,E,F分别是AB,PD的中点.
(1)求证:AF∥平面PCE;
(2)若二面角PC-CD-B为45°,AD=2,CD=3.
(i)求二面角P-EC-A的大小;
(ii)求点F到平面PCE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1小时,每生产一件乙产品使用4个B配件耗时2小时,该厂每天最多可从配件厂获得16个A配件和12个B配件,每天生产甲、乙两种产品总耗时不超过8小时,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,那么该工厂每天可获取的最大利润为
 
万元.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系中,函数f(x)=sinx-
1
x
的图象可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,且Sn+Sn+1=2n2+2n+1(n∈N+
(1)若{an}是等差数列,求a8
(2)若a1=1,求S100

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x|x-a|+2x,若存在a∈[-3,3],使得关于x的方程f(x)=tf(a)有三个不相等的实数根,则实数t的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x,y满足
x-y-1≤0
x-3y+1≥0
2x-y+2≥0
,则
y-2
x+1
的取值范围是(  )
A、(-∞,-
1
3
]∪[3,+∞)
B、[-3,
1
3
]
C、[-
1
3
,3]
D、(-∞,-3]∪[
1
3
,+∞)

查看答案和解析>>

同步练习册答案