精英家教网 > 高中数学 > 题目详情
7.函数$f(x)=\frac{{\sqrt{2{x^2}-x-1}}}{{lg({x+4})}}$的定义域为{x|-4<x<-3或-3$<x≤-\frac{1}{2}$或x≥1}.

分析 由根式内部的代数式大于等于0,分式的分母不等于0,对数式的真数大于0联立不等式组求解.

解答 解:由$\left\{\begin{array}{l}{2{x}^{2}-x-1≥0}\\{x+4>0}\\{x+4≠1}\end{array}\right.$,解得:-4<x<-3或-3$<x≤-\frac{1}{2}$或x≥1.
∴函数$f(x)=\frac{{\sqrt{2{x^2}-x-1}}}{{lg({x+4})}}$的定义域为{x|-4<x<-3或-3$<x≤-\frac{1}{2}$或x≥1}.
故答案为:{x|-4<x<-3或-3$<x≤-\frac{1}{2}$或x≥1}.

点评 本题考查函数的定义域及其求法,考查了一元二次不等式的解法,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.如果数列{an}从第二项开始,每一项与前一项的差构成一个公差不为零的等差数列,那么称数列{an}为二阶等差数列.试构造一个二阶等差数列,其通项公式an=n2-2n+2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.求函数y=(1+sinx)(1+cosx)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.数列{$\frac{1}{{2}^{n}}$+2n-1}的前n项和为$1-\frac{1}{{2}^{n}}$+n2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.不等式($\frac{1}{2}$)${\;}^{{x}^{2}}$>($\frac{1}{2}$)2x-3的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若集合A={(x,y)|y=sinx,x∈R},B={x|y=logπx},则A∩B=(  )
A.{x|0<x≤1}B.{x|0<x≤π}C.{(π,0)}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列命题正确的个数有(  )
(1)命题“p∧q为真”是命题“p∨q为真”的必要不充分条件
(2)命题“?x∈R,使得x2+x+1<0”的否定是:“对?x∈R,均有x2+x+1>0”
(3)函数f(x)=2x2-4x+1(x∈R),若f(x1)=f(x2),且x1>x2,则$\frac{x_1^2+x_2^2}{{{x_1}-{x_2}}}$的最小值为2
(4)在数列{an}中,a1=1,Sn是其前n项和,且满足Sn+1=$\frac{1}{2}$Sn+2,则{an}是等比数列.
A.3个B.2个C.1个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.等差数列{an}中,a1=2,a3=6,则a9=18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知复数z1=3-mi,z2=1+2i,m∈R
(1)若$\frac{z_1}{{{z_2}+i}}$是纯虚数,求实数m的值;
(2)若|z1+z2|=|z1-z2|,求$\overline{{z_1}-{z_2}}$.

查看答案和解析>>

同步练习册答案