| A. | y=$\frac{1}{x}$ | B. | y=-tanx | C. | y=log${\;}_{\frac{1}{2}}$x | D. | y=$\frac{1}{{2}^{x}}-{2}^{x}$ |
分析 函数y=-x3在R上是奇函数,单调递减.从定义域上y=$\frac{1}{x}$,y=-tanx,y=$lo{g}_{\frac{1}{2}}x$都不是R.只有:y=$\frac{1}{{2}^{x}}$-2x的定义域为R,在判定奇偶性与单调性即可.
解答 解:函数y=-x3在R上是奇函数,单调递减.
其中y=$\frac{1}{x}$,y=-tanx,y=$lo{g}_{\frac{1}{2}}x$的定义域分别为{x|x≠0},$(kπ-\frac{π}{2},\frac{π}{2}+kπ)$(k∈Z),{x|x>0},都不是R,舍去.
只有:y=$\frac{1}{{2}^{x}}$-2x的定义域为R,
f(-x)=$\frac{1}{{2}^{-x}}$-2-x=-$(\frac{1}{{2}^{x}}-{2}^{x})$=-f(x)是奇函数,且在R上单调递减.
故选:D.
点评 本题考查了函数的奇偶性单调性,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | $\frac{14}{3}$ | C. | $\frac{16}{3}$ | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{π}{3}$,0) | B. | ($\frac{π}{6}$,0) | C. | ($\frac{π}{2}$,0) | D. | (-$\frac{π}{3}$,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{4}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | -$\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{24}$ | B. | $\frac{1}{2}$ | C. | $\frac{7}{12}$ | D. | $\frac{7}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com