精英家教网 > 高中数学 > 题目详情
8.函数f(x)=$\frac{x}{{e}^{|x|}}$的图象大致为(  )
A.B.C.D.

分析 利用函数的奇偶性排除选项,然后利用特殊值判断即可.

解答 解:函数f(x)=$\frac{x}{{e}^{|x|}}$,
可得f(-x)=$\frac{-x}{{e}^{|x|}}$=-f(x).
函数是奇函数,排除C;
当x>0时,y=ex与y=x满足ex>x,所以$\frac{x}{{e}^{x}}$<1.
排除A、D;
故选:B.

点评 本题考查函数的图象的判断,函数的奇偶性以及函数的变化趋势,函数的最值,对称性以及周期性往往是判断函数的图象的简洁方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.矩形纸片ABCD中,AB=10cm,BC=8cm.将其按图(1)的方法分割,并按图(2)的方法焊接成扇形;按图(3)的方法将宽BC  2等分,把图(3)中的每个小矩形按图(1)分割并把4个小扇形焊接成一个大扇形;按图(4)的方法将宽BC  3等分,把图(4)中的每个小矩形按图(1)分割并把6个小扇形焊接成一个大扇形;…;依次将宽BC n等分,每个小矩形按图(1)分割并把2n个小扇形焊接成一个大扇形.当n→∞时,最后拼成的大扇形的圆心角的大小为(  )
A.小于$\frac{π}{2}$B.等于$\frac{π}{2}$C.大于$\frac{π}{2}$D.大于1.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在直角△ABC中,$∠A=\frac{π}{2}$,AB=1,AC=2,M是△ABC内一点,且$AM=\frac{1}{2}$,若$\overrightarrow{AM}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,则λ+2μ的最大值$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知在等腰△AOB中,若|OA|=|OB|=5,且$|{\overrightarrow{OA}+\overrightarrow{OB}}|≥\frac{1}{2}|{\overrightarrow{AB}}|$,则$\overrightarrow{OA}•\overrightarrow{OB}$的取值范围是(  )
A.[-15,25)B.[-15,15]C.[0,25)D.[0,15]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知全集U=R,集合A={x|ex>1},B={x|x-3>0},则A∩B=(  )
A.{x|x<3}B.{x|x>0}C.{x|1<x<3}D.{x|0<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在五面体ABCDEF中,面CDE和面ABF都为等边三角形,面ABCD是等腰梯形,点P、Q分别是CD、AB的中点,FQ∥EP,PF=PQ,AB=2CD=2.
(1)求证:平面ABF⊥平面PQFE;
(2)若PQ与平面ABF所成的角为$\frac{π}{3}$,求三棱锥P-QDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.市政府为调查市民对本市某项调控措施的态度,随机抽取了500名市民,统计了他们的月收入频率分布和对该项措施的赞成人数,统计结果如表所示:
 月收入(单位:百元)[10,20)[20,30)[30,40)[40,50)[50,60)[60,70)
 频数 25 100 150 155 5020
 赞成人数 10 70 120 150 35 15
(1)从月收入在[60,70)的20人中随机抽取3人,求3人中至少2人对对该措施持赞成态度的概率;
(2)根据用样本估计总体的思想,以样本中事件发生的频率作为相应事件发生的概率,在本市随机采访3人,用X表示3人中对该项措施持赞成态度的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在以A、B、C、D、E为顶点的五面体中,AD⊥平面ABC,AD∥BE,AC⊥CB,AB=2BE=4AD=4.
(1)O为AB的中点,F是线段BE上的一点,BE=4BF,证明:OF∥平面CDE;
(2)当直线DE与平面CBE所成角的正切值为$\frac{2\sqrt{2}}{3}$时,求平面CDE与平面ABC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知x,y满足$\left\{\begin{array}{l}{x+y≥4}\\{{x}^{2}+{y}^{2}≤16}\end{array}\right.$,则z=x2+6x+y2+8y+25的取值范围是(  )
A.[$\frac{121}{2}$,81]B.[$\frac{121}{2}$,73]C.[65,73]D.[65,81]

查看答案和解析>>

同步练习册答案